Positivity preserving discretization of time dependent semiconductor drift-diffusion equations
暂无分享,去创建一个
[1] Pierre Degond,et al. On a hierarchy of macroscopic models for semiconductors , 1996 .
[2] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[3] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[4] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[5] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[6] C. Schmeiser,et al. Semiconductor equations , 1990 .
[7] T. Fujimoto,et al. TWO CHARACTERIZATIONS OF INVERSE-POSITIVE MATRICES: THE HAWKINS-SIMON CONDITION AND THE LE CHATELIER-BRAUN PRINCIPLE ∗ , 2004 .
[8] Ansgar Jüngel,et al. Numerical Discretization of Energy-Transport Models for Semiconductors with Nonparabolic Band Structure , 2000, SIAM J. Sci. Comput..
[9] C. Bolley,et al. Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .
[10] Martin Arnold. Stability of numerical methods for differential-algebraic equations of higher index , 1993 .
[11] Elena Virnik,et al. Analysis of positive descriptor systems , 2008 .
[12] Paola Pietra,et al. New mixed finite element schemes for current continuity equations , 1990 .
[13] A. Jüngel. Transport Equations for Semiconductors , 2009 .
[14] Franco Brezzi,et al. Numerical simulation of semiconductor devices , 1989 .
[15] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[16] V. Strassen. Gaussian elimination is not optimal , 1969 .
[17] Ansgar Jüngel,et al. Numerical Coupling of Electric Circuit Equations and Energy-Transport Models for Semiconductors , 2008, SIAM J. Sci. Comput..
[18] Paola Pietra,et al. Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .