Improvements to the APBS biomolecular solvation software suite

The Adaptive Poisson–Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson–Boltzmann analytical and a semi‐analytical solver, an optimized boundary element solver, a geometry‐based geometric flow solvation model, a graph theory‐based algorithm for determining pKa values, and an improved web‐based visualization tool for viewing electrostatics.

[1]  Guo-Wei Wei,et al.  Highly accurate biomolecular electrostatics in continuum dielectric environments , 2008, J. Comput. Chem..

[2]  Matthias Stein,et al.  webPIPSA: a web server for the comparison of protein interaction properties , 2008, Nucleic Acids Res..

[3]  Nathan A. Baker,et al.  Biomolecular electrostatics and solvation: a computational perspective , 2012, Quarterly Reviews of Biophysics.

[4]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[5]  Lin Li,et al.  DelPhi: a comprehensive suite for DelPhi software and associated resources , 2012, BMC biophysics.

[6]  Alejandro Heredia-Langner,et al.  Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies. , 2013, The Journal of chemical physics.

[7]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[8]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[9]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[10]  Emil Alexov,et al.  DelPhi Web Server: A comprehensive online suite for electrostatic calculations of biological macromolecules and their complexes. , 2013, Communications in computational physics.

[11]  Arieh Warshel,et al.  Modeling electrostatic effects in proteins. , 2006, Biochimica et biophysica acta.

[12]  Philip E. Bourne,et al.  An integrated workflow for proteome-wide off-target identification and polypharmacology drug design , 2014, Tsinghua Science and Technology.

[13]  G. Lamm,et al.  The Poisson–Boltzmann Equation , 2003 .

[14]  Elena Karnaukhova,et al.  The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. , 2014, Biomaterials.

[15]  Teresa Head-Gordon,et al.  Calculating the Bimolecular Rate of Protein-Protein Association with Interacting Crowders. , 2013, Journal of chemical theory and computation.

[16]  Henri Orland,et al.  Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions , 2000 .

[17]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[18]  Stefan Richter,et al.  SDA 7: A modular and parallel implementation of the simulation of diffusional association software , 2015, J. Comput. Chem..

[19]  Ray Luo,et al.  How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. , 2006, The journal of physical chemistry. B.

[20]  Albert C. Pan,et al.  Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs , 2013, Nature.

[21]  Nathan A. Baker,et al.  PB‐AM: An open‐source, fully analytical linear poisson‐boltzmann solver , 2016, J. Comput. Chem..

[22]  J. B. Matthew Electrostatic effects in proteins. , 1985, Annual review of biophysics and biophysical chemistry.

[23]  Jean-Claude Spehner,et al.  Fast and robust computation of molecular surfaces , 1995, SCG '95.

[24]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[25]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[26]  P. Bank,et al.  Protein Data Bank Contents Guide: Atomic Coordinate Entry Format , 1999 .

[27]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[28]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[29]  Nathan A. Baker,et al.  Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations. , 2007, Biophysical journal.

[30]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[31]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[32]  J. Trylska,et al.  Continuum molecular electrostatics, salt effects, and counterion binding—A review of the Poisson–Boltzmann theory and its modifications , 2008, Biopolymers.

[33]  Teresa Head-Gordon,et al.  A New and Efficient Poisson-Boltzmann Solver for Interaction of Multiple Proteins. , 2010, Journal of chemical theory and computation.

[34]  James Andrew McCammon,et al.  Browndye: A software package for Brownian dynamics , 2010, Comput. Phys. Commun..

[35]  Sebastian Doniach,et al.  Understanding nucleic acid-ion interactions. , 2014, Annual review of biochemistry.

[36]  Martin Fritts,et al.  ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format , 2013, BMC Biotechnology.

[37]  Kaihsu Tai,et al.  Finite element simulations of acetylcholine diffusion in neuromuscular junctions. , 2003, Biophysical journal.

[38]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[39]  Donald Bashford,et al.  An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules , 1997, ISCOPE.

[40]  Nathan A. Baker,et al.  iAPBS: a programming interface to the adaptive Poisson–Boltzmann solver , 2012 .

[41]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[42]  Gerhard Klebe,et al.  Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes , 2006, Proteins.

[43]  Weihua Geng,et al.  A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules , 2013, J. Comput. Phys..

[44]  J Andrew McCammon,et al.  Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field. , 2005, Journal of chemical theory and computation.

[45]  Peijun Li,et al.  A Cartesian treecode for screened coulomb interactions , 2009, J. Comput. Phys..

[46]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Jing Zhang,et al.  Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences , 2013 .

[48]  Nathan A. Baker,et al.  Energy Minimization of Discrete Protein Titration State Models Using Graph Theory. , 2015, The journal of physical chemistry. B.

[49]  Joseph E. Goose,et al.  MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes , 2015, Structure.

[50]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[51]  Nicholas B Rego,et al.  3Dmol.js: molecular visualization with WebGL , 2014, Bioinform..

[52]  Zhan Chen,et al.  Differential geometry based solvation model II: Lagrangian formulation , 2011, Journal of mathematical biology.

[53]  Nathan A. Baker,et al.  Differential geometry based solvation model I: Eulerian formulation , 2010, J. Comput. Phys..

[54]  Junmei Wang,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..

[55]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[56]  Sergio Decherchi,et al.  A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale , 2013, PloS one.

[57]  Shan Zhao,et al.  Variational approach for nonpolar solvation analysis. , 2012, The Journal of chemical physics.

[58]  Michele Cascella,et al.  Electrostatic-Consistent Coarse-Grained Potentials for Molecular Simulations of Proteins. , 2013, Journal of chemical theory and computation.

[59]  Victoria A. Roberts,et al.  DOT2: Macromolecular docking with improved biophysical models , 2013, J. Comput. Chem..

[60]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[61]  Robert E. Bruccoleri,et al.  Finite difference Poisson-Boltzmann electrostatic calculations: Increased accuracy achieved by harmonic dielectric smoothing and charge antialiasing , 1997, J. Comput. Chem..

[62]  Robert M. Hanson,et al.  Web servers and services for electrostatics calculations with APBS and PDB2PQR , 2011, J. Comput. Chem..

[63]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[64]  Michael J. Holst,et al.  Multigrid solution of the Poisson—Boltzmann equation , 1992, J. Comput. Chem..

[65]  D. Case,et al.  Generalized born models of macromolecular solvation effects. , 2000, Annual review of physical chemistry.

[66]  Guo-Wei Wei,et al.  Parameterization of a geometric flow implicit solvation model , 2013, J. Comput. Chem..

[67]  Adrian H Elcock,et al.  Molecular Simulations of Diffusion and Association in Multimacromolecular Systems , 2004, Numerical Computer Methods, Part D.

[68]  G. Vriend,et al.  Optimizing the hydrogen‐bond network in Poisson–Boltzmann equation‐based pKa calculations , 2001, Proteins.

[69]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[70]  Stephen D. Bond,et al.  Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models. , 2007, Biophysical chemistry.

[71]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[72]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[73]  M. Fixman,et al.  The Poisson–Boltzmann equation and its application to polyelectrolytes , 1979 .

[74]  W. Im,et al.  Optimized atomic radii for protein continuum electrostatics solvation forces. , 1999, Biophysical chemistry.

[75]  Angel Herráez,et al.  Biomolecules in the computer: Jmol to the rescue , 2006, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[76]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[77]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[78]  David S. Goodsell,et al.  ePMV embeds molecular modeling into professional animation software environments. , 2011, Structure.

[79]  Paolo Mereghetti,et al.  Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions. , 2012, The journal of physical chemistry. B.

[80]  Michael J. Holst,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2001 .

[81]  Sriram Krishnan,et al.  Design and Evaluation of Opal2: A Toolkit for Scientific Software as a Service , 2009, 2009 Congress on Services - I.

[82]  Teresa Head-Gordon,et al.  An Analytical Electrostatic Model for Salt Screened Interactions between Multiple Proteins. , 2006, Journal of chemical theory and computation.

[83]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[84]  Nathan A. Baker,et al.  Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. , 2004, Biophysical journal.

[85]  Michael J. Holst,et al.  Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems , 2000, J. Comput. Chem..

[86]  Nathan A. Baker,et al.  iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS). , 2012, Computational science & discovery.

[87]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[88]  Haruki Nakamura,et al.  PDBML: the representation of archival macromolecular structure data in XML , 2005, Bioinform..

[89]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[90]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[91]  G. Ulrich Nienhaus,et al.  Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. , 2014, ACS nano.