Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale

[1]  L. Blank,et al.  Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC , 2018, Microbial Cell Factories.

[2]  S. Lovett,et al.  Instability of repetitive DNA sequences: The role of replication in multiple mechanisms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Klamt,et al.  On the feasibility of growth-coupled product synthesis in microbial strains. , 2015, Metabolic engineering.

[4]  J. Keasling,et al.  Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products inR. toruloidesto include non-ribosomal peptides , 2019, Green Chemistry.

[5]  Nawa Raj Baral,et al.  Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks , 2019, Energy & Environmental Science.

[6]  Tobias B. Alter,et al.  Determination of growth-coupling strategies and their underlying principles , 2018, BMC Bioinformatics.

[7]  Anne Richelle,et al.  Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.

[8]  J. Qiao,et al.  Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions , 2018, Journal of Industrial Microbiology & Biotechnology.

[9]  Thomas Eng,et al.  Engineering Robust Production Microbes for Large-Scale Cultivation. , 2019, Trends in microbiology.

[10]  J. Keasling,et al.  Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae , 2018, Microbial Cell Factories.

[11]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[12]  Steffen Klamt,et al.  Structural and functional analysis of cellular networks with CellNetAnalyzer , 2007, BMC Systems Biology.

[13]  S. Taguchi,et al.  Quick and efficient method for genetic transformation of biopolymer-producing bacteria , 2009 .

[14]  Adam M. Feist,et al.  The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. , 2019, Metabolic engineering.

[15]  Hoang V. Dinh,et al.  A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data , 2019, bioRxiv.

[16]  S. Adhya,et al.  The galactose regulon of Escherichia coli , 1993, Molecular microbiology.

[17]  J. Siegel,et al.  Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis , 2019, Nature Chemical Biology.

[18]  D. Yaseen,et al.  Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review , 2018, International Journal of Environmental Science and Technology.

[19]  I. Rayment,et al.  Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism* , 2003, Journal of Biological Chemistry.

[20]  James M. Clomburg,et al.  Industrial biomanufacturing: The future of chemical production , 2017, Science.

[21]  Zachary N. Russ,et al.  Employing a biochemical protecting group for a sustainable indigo dyeing strategy. , 2018, Nature chemical biology.

[22]  T. Schmeing,et al.  Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[23]  Fran Lewitter,et al.  Intragenic tandem repeats generate functional variability , 2005, Nature Genetics.

[24]  Hitoshi Takahashi,et al.  Cloning and Characterization of a Streptomyces Single Module Type Non-ribosomal Peptide Synthetase Catalyzing a Blue Pigment Synthesis* , 2007, Journal of Biological Chemistry.

[25]  S. Lee,et al.  Metabolic engineering of Corynebacterium glutamicum for L-arginine production , 2011, Nature Communications.

[26]  Sean M. Halper,et al.  Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays , 2019, Nature Biotechnology.

[27]  S. Ahmed,et al.  Bioethanol production: insight into past, present and future perspectives , 2018 .

[28]  D. Sherratt,et al.  Spatial and temporal organization of replicating Escherichia coli chromosomes , 2003, Molecular microbiology.

[29]  Sheng Yang,et al.  CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum , 2017, Nature Communications.

[30]  E. P. Hudson,et al.  Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis , 2016, Metabolic engineering communications.

[31]  Daniel Machado,et al.  Co-evolution of strain design methods based on flux balance and elementary mode analysis , 2015, Metabolic engineering communications.

[32]  B. Simmons,et al.  Methyl ketone production by Pseudomonas putida is enhanced by plant‐derived amino acids , 2019, Biotechnology and bioengineering.

[33]  Di Liu,et al.  Machine learning framework for assessment of microbial factory performance , 2019, PloS one.

[34]  William A. Sharpless,et al.  Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism , 2019, mBio.

[35]  J. Liao,et al.  Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli , 2011, Applied and Environmental Microbiology.

[36]  G. Beckham,et al.  Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria† , 2015 .

[37]  Bo Wang,et al.  A new genome-scale metabolic model of Corynebacterium glutamicum and its application , 2017, Biotechnology for Biofuels.

[38]  R. Milo,et al.  Conversion of Escherichia coli to Generate All Biomass Carbon from CO2 , 2019, Cell.

[39]  A. Nielsen,et al.  Genome‐wide identification of tolerance mechanisms toward p‐coumaric acid in Pseudomonas putida , 2017, Biotechnology and bioengineering.

[40]  Rui Gan,et al.  A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. , 2018, Journal of the American Chemical Society.

[41]  Fuchao Xu,et al.  An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue , 2012, Journal of Industrial Microbiology & Biotechnology.

[42]  Christopher T Walsh,et al.  Flavoenzymes: versatile catalysts in biosynthetic pathways. , 2013, Natural product reports.

[43]  Steffen Klamt,et al.  Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks , 2014, PLoS Comput. Biol..

[44]  Sarah A. Munro,et al.  A minimum information standard for reproducing bench-scale bacterial cell growth and productivity , 2018, Communications Biology.

[45]  J. Nielsen,et al.  Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory , 2013, PloS one.

[46]  Gi Bae Kim,et al.  Current status and applications of genome-scale metabolic models , 2019, Genome Biology.

[47]  M. Ares,et al.  Purification of RNA using TRIzol (TRI reagent). , 2010, Cold Spring Harbor protocols.

[48]  J. Keasling,et al.  Engineering microbial biofuel tolerance and export using efflux pumps , 2011, Molecular systems biology.

[49]  G. Church,et al.  Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization , 1997, Journal of bacteriology.

[50]  J. Collins,et al.  Tunable protein degradation in bacteria , 2014, Nature Biotechnology.

[51]  Steffen Klamt,et al.  An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets , 2020, PLoS Comput. Biol..

[52]  K. Prather,et al.  A Robust CRISPR Interference Gene Repression System in Pseudomonas , 2018, Journal of bacteriology.

[53]  Keith E. J. Tyo,et al.  Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli , 2010, Science.

[54]  J. Keasling,et al.  Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production , 2011 .

[55]  J. Copp,et al.  Rapid and flexible biochemical assays for evaluating 4'-phosphopantetheinyl transferase activity. , 2011, The Biochemical journal.

[56]  B A Pfeifer,et al.  Biosynthesis of Complex Polyketides in a Metabolically Engineered Strain of E. coli , 2001, Science.

[57]  Víctor de Lorenzo,et al.  Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. , 2018, Metabolic engineering.

[58]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[59]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[60]  J. Keasling,et al.  Correction: Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides , 2019, Green Chemistry.

[61]  B. Simmons,et al.  Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates , 2019, Biotechnology for Biofuels.

[62]  T. Pokój,et al.  Transcriptome remodeling of Pseudomonas putida KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress , 2018, Journal of Industrial Microbiology & Biotechnology.

[63]  R. Paul,et al.  Denim and jeans: An overview , 2015 .

[64]  J. Pronk,et al.  A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains , 2018, FEMS yeast research.

[65]  Brian F. Pfleger,et al.  Growth-coupled bioconversion of levulinic acid to butanone. , 2019, Metabolic engineering.

[66]  Adam P. Arkin,et al.  Mutant phenotypes for thousands of bacterial genes of unknown function , 2018, Nature.

[67]  Rolf Müller,et al.  Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. , 2005, Chemistry & biology.

[68]  V. Guacci,et al.  ROCC, a conserved region in cohesin's Mcd1 subunit, is essential for the proper regulation of the maintenance of cohesion and establishment of condensation , 2014, Molecular biology of the cell.

[69]  Adam M. Feist,et al.  iML1515, a knowledgebase that computes Escherichia coli traits , 2017, Nature Biotechnology.

[70]  James C. Liao,et al.  ATP drives direct photosynthetic production of 1-butanol in cyanobacteria , 2012, Proceedings of the National Academy of Sciences.

[71]  Costas D. Maranas,et al.  Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data , 2010, BMC Systems Biology.

[72]  V. de Lorenzo,et al.  High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering , 2020, iScience.

[73]  R. V. van Breemen,et al.  Nature's palette: the search for natural blue colorants. , 2014, Journal of agricultural and food chemistry.

[74]  Michael Sauer,et al.  Industrial production of acetone and butanol by fermentation—100 years later , 2016, FEMS microbiology letters.

[75]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[76]  I. Rocha,et al.  In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories , 2015, Microbiology and Molecular Reviews.

[77]  Adam M. Feist,et al.  High‐quality genome‐scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities , 2019, Environmental microbiology.

[78]  M. Vicente,et al.  Cloning vectors, derived from a naturally occurring plasmid of Pseudomonas savastanoi, specifically tailored for genetic manipulations in Pseudomonas. , 1990, Gene.

[79]  Brendan MacLean,et al.  Panorama: A Targeted Proteomics Knowledge Base , 2014, Journal of proteome research.

[80]  A. Mukhopadhyay Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. , 2015, Trends in microbiology.

[81]  Yajun Yan,et al.  Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production. , 2019, Metabolic engineering.

[82]  Fuchao Xu,et al.  Efficient production of indigoidine in Escherichia coli , 2015, Journal of Industrial Microbiology & Biotechnology.

[83]  Sarah A. Munro,et al.  A minimum information standard for reproducing bench-scale bacterial cell growth and productivity , 2018, Communications Biology.

[84]  A. Burgard,et al.  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. , 2011, Nature chemical biology.

[85]  Wei Suong Teo,et al.  A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production. , 2016, Cell systems.

[86]  S. Klamt,et al.  Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. , 2016, Metabolic engineering.

[87]  V. de Lorenzo,et al.  Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. , 2018, Metabolic engineering.

[88]  Steffen Klamt,et al.  Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms , 2017, Nature Communications.

[89]  Stamatios G Damalas,et al.  An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida , 2020, Microbial biotechnology.