Outlier-robust estimation of a sparse linear model using 𝓁1-penalized Huber's M-estimator
暂无分享,去创建一个
[1] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[2] Ilias Diakonikolas,et al. Efficient Algorithms and Lower Bounds for Robust Linear Regression , 2018, SODA.
[3] Ben Adcock,et al. Compressed Sensing with Sparse Corruptions: Fault-Tolerant Sparse Collocation Approximations , 2017, SIAM/ASA J. Uncertain. Quantification.
[4] Richard G. Baraniuk,et al. Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.
[5] Yu Cheng,et al. High-Dimensional Robust Mean Estimation in Nearly-Linear Time , 2018, SODA.
[6] Paul Tseng,et al. Robust wavelet denoising , 2001, IEEE Trans. Signal Process..
[7] C. Jennison,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[8] Jerry Li,et al. Computationally Efficient Robust Sparse Estimation in High Dimensions , 2017, COLT.
[9] S. MacEachern,et al. Regularization of Case-Specific Parameters for Robustness and Efficiency , 2012, 1210.0701.
[10] Matthieu Lerasle,et al. ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS: THEORY AND PRACTICE , 2019 .
[11] Liu Liu,et al. High Dimensional Robust Sparse Regression , 2018, AISTATS.
[12] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[13] Trac D. Tran,et al. Robust Lasso With Missing and Grossly Corrupted Observations , 2011, IEEE Transactions on Information Theory.
[14] A. Tsybakov,et al. Slope meets Lasso: Improved oracle bounds and optimality , 2016, The Annals of Statistics.
[15] Chao Gao,et al. Robust covariance and scatter matrix estimation under Huber’s contamination model , 2015, The Annals of Statistics.
[16] Y. Yatracos. Rates of Convergence of Minimum Distance Estimators and Kolmogorov's Entropy , 1985 .
[17] Rina Foygel,et al. Corrupted Sensing: Novel Guarantees for Separating Structured Signals , 2013, IEEE Transactions on Information Theory.
[18] Stanislav Minsker. Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries , 2016, The Annals of Statistics.
[19] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[20] Prateek Jain,et al. Consistent Robust Regression , 2017, NIPS.
[21] Prateek Jain,et al. Robust Regression via Hard Thresholding , 2015, NIPS.
[22] Martin J. Wainwright,et al. Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..
[23] Shie Mannor,et al. Robust Sparse Regression under Adversarial Corruption , 2013, ICML.
[24] V. Koltchinskii,et al. Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .
[25] Chao Gao. Robust regression via mutivariate regression depth , 2017, Bernoulli.
[26] Liu Liu,et al. High Dimensional Robust Estimation of Sparse Models via Trimmed Hard Thresholding , 2019, ArXiv.
[27] Cun-Hui Zhang,et al. Sparse matrix inversion with scaled Lasso , 2012, J. Mach. Learn. Res..
[28] A. Dalalyan,et al. Minimax estimation of a p-dimensional linear functional in sparse Gaussian models and robust estimation of the mean , 2017, 1712.05495.
[29] Yiyuan She,et al. Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.
[30] Andrea Montanari,et al. High dimensional robust M-estimation: asymptotic variance via approximate message passing , 2013, Probability Theory and Related Fields.
[31] Santosh S. Vempala,et al. Agnostic Estimation of Mean and Covariance , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[32] Pradeep Ravikumar,et al. Adaptive Hard Thresholding for Near-optimal Consistent Robust Regression , 2019, COLT.
[33] Eric Price,et al. Compressed Sensing with Adversarial Sparse Noise via L1 Regression , 2018, SOSA.
[34] Xiaodong Li,et al. Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.
[35] Roberto Imbuzeiro Oliveira,et al. The lower tail of random quadratic forms with applications to ordinary least squares , 2013, ArXiv.
[36] Constantine Caramanis,et al. Robust estimation of tree structured Gaussian Graphical Model , 2019, ICML.
[37] O. Catoni. Challenging the empirical mean and empirical variance: a deviation study , 2010, 1009.2048.
[38] Emmanuel J. Candès,et al. Highly Robust Error Correction byConvex Programming , 2006, IEEE Transactions on Information Theory.
[39] Arnak S. Dalalyan,et al. Rate-optimal estimation of p-dimensional linear functionals in a sparse Gaussian model , 2018 .
[40] G. Lugosi,et al. Sub-Gaussian estimators of the mean of a random vector , 2017, The Annals of Statistics.
[41] O. Papaspiliopoulos. High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .
[42] Arkadi Nemirovski,et al. Accuracy Guarantees for ℓ1-Recovery , 2010, IEEE Trans. Inf. Theory.
[43] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[44] Weixin Yao,et al. Robust linear regression: A review and comparison , 2014, Commun. Stat. Simul. Comput..
[45] G. Lugosi,et al. Sub-Gaussian mean estimators , 2015, 1509.05845.
[46] Yin Chen,et al. Fused sparsity and robust estimation for linear models with unknown variance , 2012, NIPS.
[47] Jerry Li,et al. Robustly Learning a Gaussian: Getting Optimal Error, Efficiently , 2017, SODA.
[48] Daniel M. Kane,et al. Robust Estimators in High Dimensions without the Computational Intractability , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[49] Shuheng Zhou,et al. 25th Annual Conference on Learning Theory Reconstruction from Anisotropic Random Measurements , 2022 .
[50] Pierre C Bellec,et al. Localized Gaussian width of $M$-convex hulls with applications to Lasso and convex aggregation , 2017, Bernoulli.
[51] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[52] A. Dalalyan,et al. Convex programming approach to robust estimation of a multivariate Gaussian model , 2015, 1512.04734.