Recent advances in linear barycentric rational interpolation

Well-conditioned, stable and infinitely smooth interpolation in arbitrary nodes is by no means a trivial task, even in the univariate setting considered here; already the most important case, equispaced points, is not obvious. Certain approaches have nevertheless experienced significant developments in the last decades. In this paper we review one of them, linear barycentric rational interpolation, as well as some of its applications.

[1]  Jean-Paul Berrut,et al.  Rational functions for guaranteed and experimentally well-conditioned global interpolation , 1988 .

[2]  Daan Huybrechs,et al.  Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials , 2012, Math. Comput..

[3]  L. Trefethen Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .

[4]  Stefan Güttel,et al.  Convergence of Linear Barycentric Rational Interpolation for Analytic Functions , 2012, SIAM J. Numer. Anal..

[5]  Jean-Paul Berrut,et al.  Linear barycentric rational quadrature , 2012 .

[6]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[7]  Jean-Paul Berrut,et al.  The Linear Rational Pseudospectral Method for Boundary Value Problems , 2001 .

[8]  H. Mittelmann,et al.  Recent Developments in Barycentric Rational Interpolation , 2005 .

[9]  Georges Klein,et al.  Applications of linear barycentric rational interpolation , 2012 .

[10]  Georges Klein An Extension of the Floater-Hormann Family of Barycentric Rational Interpolants , 2013, Math. Comput..

[11]  Jean-Paul Berrut,et al.  Linear Rational Finite Differences from Derivatives of Barycentric Rational Interpolants , 2012, SIAM J. Numer. Anal..

[12]  C. Schneider,et al.  Some new aspects of rational interpolation , 1986 .

[13]  W. Werner Polynomial interpolation: Lagrange versus Newton , 1984 .

[14]  Peter Henrici,et al.  Essentials of numerical analysis, with pocket calculator demonstrations , 1982 .

[15]  Kai Hormann,et al.  On the Lebesgue constant of barycentric rational interpolation at equidistant nodes , 2012, Numerische Mathematik.

[16]  Piers W. Lawrence Fast Reduction of Generalized Companion Matrix Pairs for Barycentric Lagrange Interpolants , 2013, SIAM J. Matrix Anal. Appl..

[17]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[18]  Jean-Paul Berrut,et al.  Convergence rates of derivatives of a family of barycentric rational interpolants , 2011 .

[19]  Kai Hormann,et al.  Bounding the Lebesgue constant for Berrut's rational interpolant at general nodes , 2013, J. Approx. Theory.

[20]  Kai Hormann,et al.  Università Della Svizzera Italiana Usi Technical Report Series in Informatics on the Lebesgue Constant of Berrut's Rational Interpolant at Equidistant Nodes , 2022 .

[21]  Ren-Jiang Zhang An improved upper bound on the Lebesgue constant of Berrut's rational interpolation operator , 2014, J. Comput. Appl. Math..

[22]  Lloyd N. Trefethen,et al.  A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points , 2006, SIAM J. Sci. Comput..

[23]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[24]  Ruben Juanes,et al.  Adaptive rational spectral methods for the linear stability analysis of nonlinear fourth-order problems , 2009, J. Comput. Phys..

[25]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[26]  Jean-Paul Berrut,et al.  Exponential convergence of a linear rational interpolant between transformed Chebyshev points , 1999, Math. Comput..

[27]  H. Mittelmann,et al.  Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval , 1997 .

[28]  Scott M. Murman,et al.  An Extension of the Time-Spectral Method to Overset Solvers , 2013 .

[29]  Jean-Paul Berrut,et al.  The Linear Barycentric Rational Quadrature Method for Volterra Integral Equations , 2014, SIAM J. Sci. Comput..

[30]  HAIYONG WANG,et al.  On the convergence rates of Legendre approximation , 2011, Math. Comput..

[31]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[32]  Annie A. M. Cuyt,et al.  Sharp Bounds for Lebesgue Constants of Barycentric Rational Interpolation at Equidistant Points , 2016, Exp. Math..

[33]  Jean-Paul Berrut,et al.  The linear rational collocation method , 2001 .