Coordinated Spatial Pattern Formation in Biomolecular Communication Networks

This paper proposes a control theoretic framework to model and analyze the self-organized pattern formation of molecular concentrations in biomolecular communication networks, emerging applications in synthetic biology. In biomolecular communication networks, bionanomachines, or biological cells, communicate with each other using a cell-to-cell communication mechanism mediated by a diffusible signaling molecule, thereby the dynamics of molecular concentrations are approximately modeled as a reaction-diffusion system with a single diffuser. We first introduce a feedback model representation of the reaction- diffusion system and provide a systematic local stability/instability analysis tool using the root locus of the feedback system. The instability analysis then allows us to analytically derive the conditions for the self-organized spatial pattern formation, or Turing pattern formation, of the bionanomachines. We propose a novel synthetic biocircuit motif called activator-repressor-diffuser system and show that it is one of the minimum biomolecular circuits that admit self-organized patterns over cell population.

[1]  Hideaki Tanaka,et al.  Stability Analysis of Systems With Generalized Frequency Variables , 2014, IEEE Transactions on Automatic Control.

[2]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[3]  T. Hwa,et al.  Sequential Establishment of Stripe Patterns in an Expanding Cell Population , 2011, Science.

[4]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.

[5]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[6]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[7]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[8]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[9]  P. Haccou Mathematical Models of Biology , 2022 .

[10]  J. Petersson,et al.  On global existence for semilinear parabolic systems , 2005 .

[11]  Murat Arcak,et al.  New architecture for patterning gene expression using zinc finger proteins and small RNAs , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[12]  A. Vasilakos,et al.  Molecular Communication Among Biological Nanomachines: A Layered Architecture and Research Issues , 2014, IEEE Transactions on NanoBioscience.

[13]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[14]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[15]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[16]  Christopher A. Voigt,et al.  A Synthetic Genetic Edge Detection Program , 2009, Cell.

[17]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[18]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[19]  Murat Arcak,et al.  A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser , 2012, PLoS Comput. Biol..

[20]  Shinji Hara,et al.  Hierarchical Modeling and Local Stability Analysis for Repressilators Coupled by Quorum Sensing , 2014 .

[21]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[22]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[23]  Christopher A. Voigt,et al.  Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates , 2013, Nature chemical biology.

[24]  H. Meinhardt,et al.  Biological pattern formation: fmm basic mechanisms ta complex structures , 1994 .

[25]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[26]  Javier Macía,et al.  Distributed biological computation with multicellular engineered networks , 2011, Nature.

[27]  A. Choudary,et al.  Partial Differential Equations An Introduction , 2010, 1004.2134.

[28]  Henrike Niederholtmeyer,et al.  Rapid cell-free forward engineering of novel genetic ring oscillators , 2015, eLife.

[29]  Richard M. Murray,et al.  A cell-free framework for biological systems engineering , 2015, bioRxiv.

[30]  Christopher A. Voigt,et al.  Genetic programs constructed from layered logic gates in single cells , 2012, Nature.

[31]  R. G. Casten,et al.  Instability results for reaction diffusion equations with Neumann boundary conditions , 1978 .

[32]  Shinji Hara,et al.  The Analysis of Turing Instability in Reaction-diffusion Systems Using a Single Diffuser , 2013 .

[33]  William S. Levine,et al.  The Control Handbook , 2005 .

[34]  Murat Arcak,et al.  Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems , 2011, Autom..

[35]  Shinji Hara,et al.  Turing instability in reaction-diffusion systems with a single diffuser: Characterization based on root locus , 2013, 52nd IEEE Conference on Decision and Control.

[36]  Drew Endy,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[37]  Christopher A. Voigt,et al.  Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters , 2013, Molecular Systems Biology.

[38]  Shinji Hara,et al.  LTI Systems with Generalized Frequency Variables: A Unified Framework for Homogeneous Multi-agent Dynamical Systems , 2009 .

[39]  Ian F. Akyildiz,et al.  Monaco: fundamentals of molecular nano-communication networks , 2012, IEEE Wireless Communications.