Constitutive description of dynamic deformation: physically-based mechanisms

[1]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[2]  Justin S. Wark,et al.  Plastic Deformation in Laser‐Induced Shock Compression of Monocrystalline Copper , 2001 .

[3]  M. Meyers,et al.  Spontaneous and forced shear localization in high-strain-rate deformation of tantalum , 1999 .

[4]  S. Kalidindi,et al.  Influence of grain size and stacking-fault energy on deformation twinning in fcc metals , 1999 .

[5]  G. T. Gray,et al.  Influence of grain size on the constitutive response and substructure evolution of MONEL 400 , 1999 .

[6]  M. Mayo,et al.  Structure and Mechanical Behavior of Bulk Nanocrystalline Materials , 1999 .

[7]  S. Kalidindi,et al.  Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins , 1997 .

[8]  R. Armstrong,et al.  Dislocation Mechanics Based analysis of Material Dynamics Behavior : Enhanced Ductility, Deformation Twinning, Shock Deformation, Shear Instability, Dynamic Recovery , 1997 .

[9]  C. Koch,et al.  Grain growth in nanocrystalline iron prepared by mechanical attrition , 1997 .

[10]  M. Meyers,et al.  High-strain, high-strain-rate behavior of tantalum , 1995 .

[11]  M. Meyers Dynamic Behavior of Materials , 1994 .

[12]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[13]  U. S. Lindholm,et al.  Shock Wave and High-Strain-Rate Phenomena in Materials , 1992 .

[14]  G. Gray,et al.  Dynamic deformation of shock prestrained copper , 1991 .

[15]  Ronald W. Armstrong,et al.  Description of tantalum deformation behavior by dislocation mechanics based constitutive relations , 1990 .

[16]  R. Armstrong,et al.  Dislocation-mechanics-based constitutive relations for material dynamics calculations , 1987 .

[17]  Y. Gupta,et al.  Shock Waves in Condensed Matter , 1986 .

[18]  Lawrence E Murr,et al.  Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, with K. P. Staudhammer and M. A. Meyers , Marcel Dekker, Inc., New York, , 1986 .

[19]  J. Weertman Plastic deformation behind strong shock waves , 1986 .

[20]  G. Lutjering,et al.  Titanium: Science and Technology , 1985 .

[21]  V. Kafka,et al.  The inhomogeneity of plastic deformation , 1985 .

[22]  E. Ashworth,et al.  A model for the effect of grain size on the yield stress of metals , 1982 .

[23]  K. G. Hoge,et al.  The temperature and strain rate dependence of the flow stress of tantalum , 1977 .

[24]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[25]  Harold Margolin,et al.  Polycrystalline strengtheningDurcissement de polycristauxVerfestigung im polykristallinen material , 1975 .

[26]  J. Klepaczko Thermally activated flow and strain rate history effects for some polycrystalline f.c.c. metals , 1975 .

[27]  K. Okazaki,et al.  Effects of interstitial content and grain size on the strength of titanium at low temperatures , 1973 .

[28]  J. Hirth The influence of grain boundaries on mechanical properties , 1972 .

[29]  H. Conrad The athermal component of the flow stress in crystalline solids , 1970 .

[30]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[31]  K. Ono Temperature Dependence of Dispersed Barrier Hardening , 1968 .

[32]  J. Harding The yield and fracture behaviour of high-purity iron single crystals at high rates of strain , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  W. Spitzig,et al.  Three-stage hardening in tantalum single crystals. , 1965 .

[34]  G. Thomas,et al.  The substructure of plastically deformed nickel , 1964 .

[35]  G. Thomas,et al.  MECHANICAL TWINNING IN NICKEL , 1963 .

[36]  E. Hornbogen Shock-induced dislocations , 1962 .

[37]  T. Mitchell,et al.  Deformation twinning in alloys at low temperatures , 1962 .

[38]  J. Venables Deformation twinning in face-centred cubic metals , 1961 .

[39]  D. F. Stein,et al.  Mobility of Edge Dislocations in Silicon‐Iron Crystals , 1960 .

[40]  H. Conrad,et al.  Activation energy for deformation of metals at low temperatures , 1960 .

[41]  W. Johnston,et al.  Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals , 1959 .

[42]  S. Ikeda,et al.  Deformation of Thin Copper Crystals , 1956 .

[43]  J. H. Bechtold Tensile properties of annealed tantalum at low temperatures , 1955 .

[44]  S. Suzuki Surfaces and Interfaces , 2002 .

[45]  Plasticity: Adiabatic Shear Localization , 2001 .

[46]  L. Murr,et al.  Shock-induced deformation twinning in tantalum , 1997 .

[47]  J. M. Pitarke,et al.  Surfaces and Interfaces , 2017 .

[48]  L. Meyer,et al.  Impact loading and dynamic behaviour of materials , 1988 .

[49]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[50]  M. Meyers A mechanism for dislocation generation in shock-wave deformation , 1978 .

[51]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[52]  R. Armstrong,et al.  A Constitutive Relation for Deformation Twinning in Body Centered Cubic Metals , 1973 .

[53]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .

[54]  H. Herman Advances in materials research , 1967 .

[55]  J. Hirth,et al.  Deformation twinning : proceedings of a Conference, Gainesville, Fla., Mar. 21-22, 1963 , 1964 .

[56]  J. Meakin,et al.  On the mechanism of work hardening in face-centred cubic metals, with special reference to polycrystalline copper , 1957 .