Processing of Ultrahigh-Resolution Spaceborne Sliding Spotlight SAR Data on Curved Orbit

In high-resolution spaceborne synthetic aperture radars (SARs), with increasing synthetic aperture length on curved orbits, the hyperbolic range history (HRH) assumption deteriorates, and simple analytic transfer functions in the Doppler domain used in SAR processing do not exist. A subsection HRH model is proposed. Ultra- high-resolution sliding spotlight SAR data can be handled satisfactorily, and simple analytic transform functions are used all the same. The proposed range history model is also applicable to bistatic SARs.

[1]  Alberto Moreira,et al.  Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes , 1996, IEEE Trans. Geosci. Remote. Sens..

[2]  Uwe Stilla,et al.  Building feature extraction via a deterministic approach: application to real high resolution SAR images , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Zheng Bao,et al.  Bistatic SAR Data Focusing Using an Omega-K Algorithm Based on Method of Series Reversion , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Alberto Moreira,et al.  Spotlight SAR data processing using the frequency scaling algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  F. H. Wong,et al.  Effective velocity estimation for space-borne SAR , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[7]  Davide D'Aria,et al.  High-Resolution Spaceborne SAR Focusing by SVD-Stolt , 2007, IEEE Geoscience and Remote Sensing Letters.

[8]  Ian G. Cumming,et al.  A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion , 2007, IEEE Geoscience and Remote Sensing Letters.

[9]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  R. Keith Raney Considerations for SAR image quantification unique to orbital systems , 1991, IEEE Trans. Geosci. Remote. Sens..

[11]  Joachim Boukamp,et al.  A high resolution SAR sensor for space and airborne applications , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[12]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[13]  M.R. Ito,et al.  A chirp scaling approach for processing squint mode SAR data , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Teng Long,et al.  Performance analysis of two-step algorithm in sliding spotlight space-borne SAR , 2010, 2010 IEEE Radar Conference.

[15]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Ian G. Cumming,et al.  Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[18]  K. Eldhuset A new fourth-order processing algorithm for spaceborne SAR , 1998 .

[19]  Alberto Moreira,et al.  Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Andreas R. Brenner,et al.  Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[22]  K. Eldhuset Ultra high resolution spaceborne SAR processing , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Knut Eldhuset,et al.  Spaceborne Bistatic SAR Processing Using the EETF4 Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[24]  E. Normant,et al.  Characteristics and applications of long range ultra high resolution SAR mode , 1999 .

[25]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[26]  Franz J. Meyer,et al.  Processing of Bistatic SAR Data From Quasi-Stationary Configurations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[27]  J. Mittermayer,et al.  Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[28]  Oscar Mora,et al.  TerraSAR-X high resolution SAR data: Ground motion and mapping applications for infrastructure, oil & gas and public health domain , 2008 .

[29]  Alberto Moreira,et al.  Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  Ian G. Cumming,et al.  Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Helko Breit,et al.  TerraSAR-X technologies and first results , 2006 .

[32]  Gianfranco Fornaro,et al.  Spotlight SAR data focusing based on a two-step processing approach , 2001, IEEE Trans. Geosci. Remote. Sens..

[33]  R. Raney Doppler properties of radars in circular orbits , 1986 .

[34]  Ian G. Cumming,et al.  A Comparison of Point Target Spectra Derived for Bistatic SAR Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.