Atomistic based continuum investigation of plastic deformation in nanocrystalline copper

A continuum model of nanocrystalline copper was developed based on results from independent atomistic calculations on 11 bicrystals containing high angle grain boundaries. The relationship between grain boundary structure and its mechanical response was investigated. Based on the atomistic calculations; a constitutive law for grain boundary interfaces was implemented within a finite element calculation that consisted of a microstructure loaded in compression. The yield strength as a function of grain size was compared to experimental data and molecular dynamics results. Calculations were performed to demonstrate the relationship between intragranular plasticity and grain boundary sliding.

[1]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[2]  R. Birringer,et al.  The study of grain size dependence of yield stress of copper for a wide grain size range , 1994 .

[3]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[4]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[5]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .

[6]  Y. Estrin,et al.  Constitutive modelling of strength and plasticity of nanocrystalline metallic materials , 2001 .

[7]  Evan Ma,et al.  Microsample tensile testing of nanocrystalline copper , 2003 .

[8]  E. Hall,et al.  The Deformation and Ageing of Mild Steel , 1951 .

[9]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[10]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[11]  L. Anand,et al.  Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals , 2004 .

[12]  M. Meyers,et al.  Analytical and computational description of effect of grain size on yield stress of metals , 2001 .

[13]  P. Sanders,et al.  Compressive yield strengths of nanocrystalline Cu and Pd , 1997 .

[14]  John R. Rice,et al.  The activation energy for dislocation nucleation at a crack , 1994 .

[15]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[16]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[17]  Mark F. Horstemeyer,et al.  A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory , 2003 .

[18]  J. Molinari,et al.  Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper , 2004 .

[19]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[20]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[21]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[22]  Jianmin Qu,et al.  Homogenization Method for Strength and Inelastic Behavior of Nanocrystalline Materials , 2004 .

[23]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[24]  P. Krysl,et al.  Deformation mechanism transitions in nanoscale fcc metals , 2003 .

[25]  D. Gross,et al.  Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation , 2002 .

[26]  G. R. Bourne,et al.  Mechanical properties of nanocrystalline nickel produced by electrodeposition , 1999 .

[27]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[28]  D. Roundy,et al.  Ideal Shear Strengths of fcc Aluminum and Copper , 1999 .

[29]  J. Weertman,et al.  Microsample tensile testing of nanocrystalline metals , 2000 .

[30]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[31]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[32]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[33]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[34]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[35]  S. G. Srinivasan,et al.  Deformation twinning in nanocrystalline copper at room temperature and low strain rate , 2004 .

[36]  M. Meyers,et al.  Computational description of nanocrystalline deformation based on crystal plasticity , 2004 .

[37]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[38]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[39]  David L. McDowell,et al.  Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations , 2004 .

[40]  J. Z. Zhu,et al.  The finite element method , 1977 .

[41]  G. Palumbo,et al.  High strength nanocrystalline cobalt with high tensile ductility , 2003 .

[42]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[43]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[44]  Y. Ikuhara,et al.  High temperature deformation behavior of [0001] symmetrical tilt Σ7 and Σ21 grain boundaries in alumina bicrystals , 2004 .

[45]  H. Van Swygenhoven,et al.  Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation , 2003, Science.

[46]  O. T. Nguyen,et al.  Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior , 2002 .

[47]  Jagdish Narayan,et al.  On the grain size softening in nanocrystalline materials , 2000 .

[48]  Subra Suresh,et al.  Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel , 2003 .

[49]  L. Takács,et al.  Mechanical response and modeling of fully compacted nanocrystalline iron and copper , 2000 .

[50]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[51]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[52]  A. Ankudinov,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004 .