Heterogeneous deformation and texture development in halite polycrystals: comparison of different modeling approaches and experimental data

Modeling the plastic deformation and texture evolution in halite is challenging due to its high plastic anisotropy at the single crystal level and to the influence this exerts on the heterogeneity of deformation over halite polycrystals. Three different assumptions for averaging the single crystal responses over the polycrystal were used: a Taylor hypothesis, a self-consistent viscoplastic model, and a finite element methodology. The three modeling approaches employ the same single crystal relations, but construct the polycrystal response differently. The results are compared with experimental data for extension at two temperatures: 20 and 100 degreesC. These comparisons provide new insights of how the interplay of compatibility and local equilibrium affects the overall plastic behavior and the texture development in highly anisotropic polycrystalline materials. Neither formulation is able to completely simulate the texture development of halite polycrystals while, at the same time, giving sound predictions of microstructural evolution. Results obtained using the finite element methodology are promising, although they point to the need for greater resolution of the individual crystals to capture the full impact of deformation heterogeneities. (C) 2003 Elsevier B.V All rights reserved.

[1]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[2]  P. Haasen,et al.  HARDENING MECHANISMS OF IONIC CRYSTALS ON {110} AND {100} SLIP PLANES , 1981 .

[3]  U. F. Kocks,et al.  The yield surface of h.c.p. crystals , 1985 .

[4]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[5]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[6]  Michel Bornert,et al.  An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals , 2000 .

[7]  Y. Bréchet,et al.  A deformation-based model for recrystallization of anisotropic materials , 1997 .

[8]  H. Siemes Anwendung der Taylor-Theorie auf die Regelung von kubischen Mineralen , 1974 .

[9]  P. Trimby,et al.  Misorientations across etched boundaries in deformed rocksalt: a study using electron backscatter diffraction , 2000 .

[10]  Ricardo A. Lebensohn,et al.  A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals , 1994 .

[11]  H. Wenk A voyage through the deformed Earth with the self-consistent model , 1999 .

[12]  W. Skrotzki,et al.  Development of texture and microstructure in extruded ionic polycrystalline aggregates , 1983 .

[13]  D. Sannemann Salt-Stock Families in Northwestern Germany , 1968 .

[14]  J. Jonas,et al.  Yield surfaces for textured polycrystals—I. Crystallographic approach , 1987 .

[15]  U. F. Kocks,et al.  Taylor factors in materials with many deformation modes , 1996 .

[16]  A. Molinari,et al.  Texture development in halite: Comparison of Taylor model and self-consistent theory , 1989 .

[17]  P. Dawson,et al.  On the spatial arrangement of lattice orientations in hot-rolled multiphase titanium , 2001 .

[18]  U. F. Kocks,et al.  Theory of torsion texture development , 1984 .

[19]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[20]  Ashish Kumar,et al.  Stacking fault energy and microstructure effects on torsion texture evolution , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  J. Z. Zhu,et al.  The finite element method , 1977 .

[22]  J. E. Russell,et al.  Rheology of rocksalt , 1993 .

[23]  P. Van Houtte,et al.  On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals , 1982 .

[24]  P. Dawson,et al.  Polycrystal plasticity modeling of intracrystalline boundary textures , 1999 .

[25]  Gorti B. Sarma,et al.  Effects of interactions among crystals on the inhomogeneous deformations of polycrystals , 1996 .

[26]  U. F. Kocks,et al.  A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking , 1995 .

[27]  H. Wenk,et al.  BEARTEX: a Windows-based program system for quantitative texture analysis , 1998 .

[28]  H. C. Heard,et al.  Temperature and rate dependent deformation of halite , 1970 .

[29]  H. Kern Texture development in calcite and quartz rocks deformed at uniaxial and real triaxial states of strain , 1979 .

[30]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[31]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[32]  G. Braun,et al.  Deformation und Gefügeregelung von Steinsalz im Temperaturbereich 20–200° c , 1973 .

[33]  J. Poirier,et al.  Dynamic recrystallization during creep of single‐crystalline halite: An experimental study , 1979 .

[34]  F. Trusheim Über Halokinese und ihre Bedeutung für die strukturelle Entwicklung Norddeutschlands , 1957 .

[35]  F. Trusheim Mechanism of Salt Migration in Northern Germany , 1960 .

[36]  Armand Joseph Beaudoin,et al.  Finite Element Modeling of Polycrystalline Solids , 1994 .