LBSNRank: personalized pagerank on location-based social networks

Different from traditional social networks, the location-based social networks allow people to share their locations according to location-tagged user-generated contents, such as checkins, trajectories, text, photos, etc. In location-based social networks, which are based on users' checkins, people could share his or her location according to checkin while visiting around. However, people's locations change frequently and the rankings of people change dynamically too, which makes ranking on graphs a challenging work. To address this challenge, we propose the LBSNRank algorithm on graphs with nodes whose contents change dynamically. To validate our algorithm on real datasets, we have crawled and analyzed a dataset from the Dianping website. Experiments on this real dataset show that our LBSNRank algorithm performs better than traditional personalized PageRank in efficiency.

[1]  Sreenivas Gollapudi,et al.  Estimating PageRank on graph streams , 2008, PODS.

[2]  Berthold Reinwald,et al.  BinRank: Scaling Dynamic Authority-Based Search Using Materialized Subgraphs , 2010, IEEE Trans. Knowl. Data Eng..

[3]  David M. Pennock,et al.  The structure of broad topics on the web , 2002, WWW.

[4]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[5]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[6]  Soumen Chakrabarti,et al.  Dynamic personalized pagerank in entity-relation graphs , 2007, WWW '07.

[7]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[8]  Meng Zhang,et al.  Identifying Influential Users Of Micro-Blogging Services: A Dynamic Action-Based Network Approach , 2011, PACIS.

[9]  Vagelis Hristidis,et al.  ObjectRank: Authority-Based Keyword Search in Databases , 2004, VLDB.

[10]  Wei-Ying Ma,et al.  Block-level link analysis , 2004, SIGIR '04.

[11]  Dániel Fogaras,et al.  Towards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experiments , 2005, Internet Math..

[12]  Nelli Litvak Monte Carlo methods of PageRank computation , 2004 .

[13]  Cecilia Mascolo,et al.  Distance Matters: Geo-social Metrics for Online Social Networks , 2010, WOSN.

[14]  Yu Zheng,et al.  Location-Based Social Networks: Users , 2011, Computing with Spatial Trajectories.

[15]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[16]  Sepandar D. Kamvar,et al.  An Analytical Comparison of Approaches to Personalizing PageRank , 2003 .

[17]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[18]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[19]  Dániel Fogaras,et al.  Towards Scaling Fully Personalized PageRank , 2004, WAW.

[20]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[21]  Xing Xie,et al.  Learning Location Correlation from GPS Trajectories , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[22]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[23]  Qiang Yang,et al.  Exploiting the hierarchical structure for link analysis , 2005, SIGIR '05.

[24]  Ling Feng,et al.  A Tweet-Centric Approach for Topic-Specific Author Ranking in Micro-Blog , 2011, ADMA.

[25]  Xing Xie,et al.  Learning travel recommendations from user-generated GPS traces , 2011, TIST.

[26]  Dong Xin,et al.  Fast personalized PageRank on MapReduce , 2011, SIGMOD '11.

[27]  Konstantin Avrachenkov,et al.  Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient , 2007, SIAM J. Numer. Anal..

[28]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[29]  David M. Pennock,et al.  Winners don't take all: Characterizing the competition for links on the web , 2002, Proceedings of the National Academy of Sciences of the United States of America.