GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web

The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision.

[1]  Bruce M. Maggs,et al.  Globally Distributed Content Delivery , 2002, IEEE Internet Comput..

[2]  Qing Liu,et al.  A Multi-Agent View of the Sensor Web , 2009, PRIMA Workshops.

[3]  Tim Tau Hsieh Using sensor networks for highway and traffic applications , 2004, IEEE Potentials.

[4]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[5]  A. Rowstron,et al.  Scalable, decentralized object location and routing for large-scale peer-to-peer systems , 2001 .

[6]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[7]  Kirk Martinez,et al.  Environmental Sensor Networks: A revolution in the earth system science? , 2006 .

[8]  Chih-Yuan Huang,et al.  LOST-Tree: a spatio-temporal structure for efficient sensor data loading in a sensor web browser , 2013, Int. J. Geogr. Inf. Sci..

[9]  Alexander Zipf,et al.  A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data , 2013, J. Spatial Inf. Sci..

[10]  Christoph Stasch,et al.  New Generation Sensor Web Enablement , 2011, Sensors.

[11]  M. Goodchild Citizens as sensors: the world of volunteered geography , 2007 .

[12]  Chris Anderson,et al.  The Long Tail: Why the Future of Business is Selling Less of More , 2006 .

[13]  Rohana Rezel,et al.  A Folksonomy-Based Recommendation System for the Sensor Web , 2011, W2GIS.

[14]  C. Y. Huang,et al.  A HYBRID PULL-PUSH SYSTEM FOR NEAR REAL-TIME NOTIFICATIONS ON SENSOR WEB , 2012 .

[15]  John Davidson,et al.  Ogc® sensor web enablement:overview and high level achhitecture. , 2007, 2007 IEEE Autotestcon.

[16]  李真,et al.  基于Content-Addressable Network的对等网络研究 , 2007 .

[17]  Nirupama Bulusu,et al.  Wireless Sensor Networks A Systems Perspective , 2005 .

[18]  GeoCENS: Geospatial Cyberinfrastructure for Environmental Sensing , 2010 .

[19]  Ian T. Foster,et al.  Mapping the Gnutella Network , 2002, IEEE Internet Comput..

[20]  Hyoil Han,et al.  Survey of semantic annotation platforms , 2005, SAC '05.

[21]  Chao Yang,et al.  Flood detection and mapping of the Thailand Central plain using RADARSAT and MODIS under a sensor web environment , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[22]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[23]  Srinivasan Seshan,et al.  IrisNet: An Architecture for a Worldwide Sensor Web , 2003, IEEE Pervasive Comput..

[24]  Cheng-Long Chuang,et al.  Ecological Monitoring Using Wireless Sensor Networks-—Overview, Challenges, and Opportunities , 2013 .

[25]  Chih-Yuan Huang,et al.  A Bottom-Up Approach for Automatically Grouping Sensor Data Layers by their Observed Property , 2013, ISPRS Int. J. Geo Inf..

[26]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[27]  N. Xu A Survey of Sensor Network Applications , 2002 .

[28]  Wen-Zhan Song,et al.  Live Web: A sensorweb portal for sensing the world in real-time , 2011 .

[29]  Alexander Zipf,et al.  Toward coupling sensor data and volunteered geographic information (VGI) with agent-based transport simulation in the context of smart cities , 2012, SWE '12.

[30]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[31]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[32]  Bernd Resch,et al.  Live Geography -- Embedded Sensing for Standarised Urban Environmental Monitoring , 2009 .

[33]  Steve Liang,et al.  A Hybrid Peer-to-Peer Architecture for Global Geospatial Web Service Discovery , 2011 .

[34]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[35]  Arne Bröring,et al.  Handling the semantics of sensor observables within SWE discovery solutions , 2010, 2010 International Symposium on Collaborative Technologies and Systems.

[36]  Suman Nath,et al.  COLR-Tree: Communication-Efficient Spatio-Temporal Indexing for a Sensor Data Web Portal , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[37]  Steve H. L. Liang,et al.  A distributed geospatial infrastructure for Sensor Web , 2005, Comput. Geosci..

[38]  Kevin A. Delin,et al.  Sensor Webs in the Wild , 2005 .

[39]  Chih-Yuan Huang,et al.  Capturing the Long Tail of Sensor Web , 2010 .

[40]  Christoph Stasch,et al.  Spatio-temporal aggregation of European air quality observations in the Sensor Web , 2012, Comput. Geosci..

[41]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[42]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[43]  Christoph Stasch,et al.  Discovery Mechanisms for the Sensor Web , 2009, Sensors.