Sparsity Learning Formulations for Mining

Traditional clustering and feature selection methods consider the data matrix as static. However, the data matrices evolve smoothly over time in many applications. A simple approach to learn from these time-evolving data matrices is to analyze them separately. Such strategy ignores the time-dependent nature of the underlying data. In this paper, we propose two formulations for evolutionary co-clustering and feature selection based on the fused Lasso regularization. The evolutionary co-clustering formulation is able to identify smoothly varying hidden block structures embedded into the matrices along the temporal dimension. Our formulation is very flexible and allows for imposing smoothness constraints over only one dimension of the data matrices. The evolutionary feature selection formulation can uncover shared features in clustering from time-evolving data matrices. We show that the optimization problems involved are non-convex, non-smooth and non-separable. To compute the solutions efficiently, we develop a two-step procedure that optimizes the objective function iteratively. We evaluate the proposed formulations using the Allen Developing Mouse Brain Atlas data. Results show that our formulations consistently outperform prior methods. Index Terms—Sparsity learning, time-varying data, co-clustering, feature selection, optimization, bioinformatics, neuroinformatics C

[1]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[2]  Inderjit S. Dhillon,et al.  Minimum Sum-Squared Residue Co-Clustering of Gene Expression Data , 2004, SDM.

[3]  Lydia Ng,et al.  Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. , 2010, Methods.

[4]  L. Wasserman,et al.  Feature Selection For High-Dimensional Clustering , 2014, 1406.2240.

[5]  Alfred O. Hero,et al.  Adaptive evolutionary clustering , 2011, Data Mining and Knowledge Discovery.

[6]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[7]  Jieping Ye,et al.  An efficient algorithm for a class of fused lasso problems , 2010, KDD.

[8]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[9]  Junzhou Huang,et al.  Preconditioning for Accelerated Iteratively Reweighted Least Squares in Structured Sparsity Reconstruction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[11]  Jianhua Z. Huang,et al.  Biclustering via Sparse Singular Value Decomposition , 2010, Biometrics.

[12]  Charu C. Aggarwal,et al.  Evolutionary Network Analysis , 2014, ACM Comput. Surv..

[13]  Luis Puelles,et al.  Forebrain gene expression domains and the evolving prosomeric model , 2003, Trends in Neurosciences.

[14]  Fei Wang,et al.  Towards Evolutionary Nonnegative Matrix Factorization , 2011, AAAI.

[15]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[16]  Philip S. Yu,et al.  Proximity Tracking on Time-Evolving Bipartite Graphs , 2008, SDM.

[17]  Robert Tibshirani,et al.  A Framework for Feature Selection in Clustering , 2010, Journal of the American Statistical Association.

[18]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[19]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[20]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[21]  Holger Hoefling A Path Algorithm for the Fused Lasso Signal Approximator , 2009, 0910.0526.

[22]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[23]  Charles Watson,et al.  The Mouse Nervous System. , 2012 .

[24]  Panos M. Pardalos,et al.  Biclustering in data mining , 2008, Comput. Oper. Res..

[25]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[26]  Shuiwang Ji,et al.  A sparsity-inducing formulation for evolutionary co-clustering , 2012, KDD.

[27]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[28]  Yiannis Kompatsiaris,et al.  Co-Clustering Tags and Social Data Sources , 2008, 2008 The Ninth International Conference on Web-Age Information Management.

[29]  Yun Chi,et al.  On evolutionary spectral clustering , 2009, TKDD.

[30]  Deepayan Chakrabarti,et al.  Evolutionary clustering , 2006, KDD '06.

[31]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[32]  Chris H. Q. Ding,et al.  Bipartite graph partitioning and data clustering , 2001, CIKM '01.

[33]  Junzhou Huang,et al.  Composite splitting algorithms for convex optimization , 2011, Comput. Vis. Image Underst..

[34]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[35]  C. Soneson,et al.  A method for visual identification of small sample subgroups and potential biomarkers , 2011, 1111.7125.

[36]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[37]  Elena Marchiori,et al.  Feature selection for k-means clustering stability: theoretical analysis and an algorithm , 2013, Data Mining and Knowledge Discovery.

[38]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[39]  Huan Liu,et al.  Feature Selection for Clustering: A Review , 2018, Data Clustering: Algorithms and Applications.

[40]  Yun Chi,et al.  Analyzing communities and their evolutions in dynamic social networks , 2009, TKDD.

[41]  Arkadi Nemirovski,et al.  EFFICIENT METHODS IN CONVEX PROGRAMMING , 2007 .

[42]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[43]  Shuiwang Ji,et al.  Computational network analysis of the anatomical and genetic organizations in the mouse brain , 2011, Bioinform..

[44]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.