Supervised Learning of Places from Range Data using AdaBoost

This paper addresses the problem of classifying places in the environment of a mobile robot into semantic categories. We believe that semantic information about the type of place improves the capabilities of a mobile robot in various domains including localization, path-planning, or human-robot interaction. Our approach uses AdaBoost, a supervised learning algorithm, to train a set of classifiers for place recognition based on laser range data. In this paper we describe how this approach can be applied to distinguish between rooms, corridors, doorways, and hallways. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various environments.

[1]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[2]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[3]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[4]  Jake K. Aggarwal,et al.  Position estimation for an autonomous mobile robot in an outdoor environment , 1992, IEEE Trans. Robotics Autom..

[5]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[6]  Yoav Freund,et al.  Data filtering and distribution modeling algorithms for machine learning , 1993 .

[7]  Leslie G. Valiant,et al.  Cryptographic limitations on learning Boolean formulae and finite automata , 1994, JACM.

[8]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[9]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[10]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[11]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[13]  R. Simmons,et al.  Xavier: A Robot Navigation Architecture Based on Partially Observable Markov Decision Process Models , 1998 .

[14]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[15]  Geoffrey E. Hinton,et al.  A Mobile Robot That Learns Its Place , 1997, Neural Computation.

[16]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[17]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[18]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[19]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[20]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[21]  Hanumant Singh,et al.  Advances in Underwater Robot Vehicles for Deep Ocean Exploration: Navigation, Control, and Survey Operations , 2000 .

[22]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[23]  Stefan B. Williams,et al.  Autonomous underwater navigation and control , 2001, Robotica.

[24]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[25]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[26]  Gunnar Rätsch,et al.  An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.

[27]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[28]  Alessandro Saffiotti,et al.  A virtual sensor for room detection , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[30]  Henrik I. Christensen,et al.  Behaviour Coordination in Structured Environments , 2022 .

[31]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Wolfram Burgard,et al.  Learning compact 3D models of indoor and outdoor environments with a mobile robot , 2003, Robotics Auton. Syst..

[33]  Wolfram Burgard,et al.  Mapping and exploration with mobile robots using coverage maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[34]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[35]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[36]  Wolfram Burgard,et al.  A comparison of methods for line extraction from range data , 2004 .

[37]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[38]  Wolfram Burgard,et al.  A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[39]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[40]  Andreas Zell,et al.  Real-time object tracking for soccer-robots without color information , 2004, Robotics Auton. Syst..

[41]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.