Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents.

Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.

[1]  L. Helm,et al.  Structural and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd3+ Complexes of Interest in Magnetic Resonance Imaging: An Integrated and Theoretically Self-Consistent Approach1 , 1996 .

[2]  Hans-Gerd Löhmannsröben,et al.  Quantum dot biosensors for ultrasensitive multiplexed diagnostics. , 2010, Angewandte Chemie.

[3]  M. V. van Zandvoort,et al.  Gadolinium‐labeled quantum dots for molecular magnetic resonance imaging: R1 versus R2 mapping , 2010, Magnetic resonance in medicine.

[4]  Jean-Claude G Bünzli,et al.  Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range. , 2009, Chemistry.

[5]  Dean Ho,et al.  Gd(III)-nanodiamond conjugates for MRI contrast enhancement. , 2010, Nano letters.

[6]  G. Brunisholz,et al.  Sur la séparation des terres rares à l'aide de l'acide éthylènediamine‐tétraacétique. IX. Procédé en cycle pour le fractionnement des terres yttriques , 1958 .

[7]  Jean-Claude G. Bünzli,et al.  Lanthanide Luminescent Bioprobes (LLBs) , 2009 .

[8]  Jinwoo Cheon,et al.  All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. , 2009, Angewandte Chemie.

[9]  M. Cann,et al.  Luminescent nonacoordinate cationic lanthanide complexes as potential cellular imaging and reactive probes. , 2003, Organic & biomolecular chemistry.

[10]  Ciprian Catana,et al.  Bimodal MR-PET agent for quantitative pH imaging. , 2010, Angewandte Chemie.

[11]  Liang Li,et al.  Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor , 2008 .

[12]  A. Beeby,et al.  Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states , 1999 .

[13]  M. Ronjat,et al.  Design of a Disulfide-less, Pharmacologically Inert, and Chemically Competent Analog of Maurocalcine for the Efficient Transport of Impermeant Compounds into Cells* , 2008, Journal of Biological Chemistry.

[14]  P. Fries,et al.  Lanthanide complexes of a picolinate ligand derived from 1,4,7-triazacyclononane with potential application in magnetic resonance imaging and time-resolved luminescence imaging. , 2006, Chemistry.

[15]  Klaas Nicolay,et al.  MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[17]  M. Botta,et al.  High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. , 2008, Journal of the American Chemical Society.

[18]  D. Slaaf,et al.  Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. , 2007, Nano letters.

[19]  Paul H. Holloway,et al.  GdIII‐Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes , 2006 .

[20]  T. Meade,et al.  Synthesis of multimeric MR contrast agents for cellular imaging. , 2008, Journal of the American Chemical Society.

[21]  S. Laurent,et al.  A dual lanthanide probe suitable for optical (Tb3+ luminescence) and magnetic resonance imaging (Gd3+ relaxometry). , 2006, Bioorganic & medicinal chemistry letters.

[22]  R. Tsien,et al.  Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases , 2010, Proceedings of the National Academy of Sciences.

[23]  René M. Botnar,et al.  Magnetic conjugated polymer nanoparticles as bimodal imaging agents. , 2010, Journal of the American Chemical Society.

[24]  Klaas Nicolay,et al.  Quantum dots for multimodal molecular imaging of angiogenesis , 2010, Angiogenesis.

[25]  E. Terreno,et al.  Metal containing nanosized systems for MR-Molecular Imaging applications , 2008 .

[26]  Thomas J. Meade,et al.  Multimodal MRI contrast agents , 2007, JBIC Journal of Biological Inorganic Chemistry.

[27]  D. Parker,et al.  Definition of the uptake mechanism and sub- cellular localisation profile of emissive lanthanide complexes as cellular optical probes , 2010 .

[28]  Chad A Mirkin,et al.  Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. , 2009, Angewandte Chemie.

[29]  M. V. van Zandvoort,et al.  Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. , 2008, Cancer research.

[30]  P. Pantazis,et al.  Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. , 2010, Journal of the American Chemical Society.

[31]  Jinwoo Cheon,et al.  A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. , 2008, Angewandte Chemie.

[32]  M. Ronjat,et al.  In vitro and in vivo intracellular delivery of quantum dots by maurocalcine , 2011 .

[33]  J. Bünzli Lanthanide luminescence for biomedical analyses and imaging. , 2010, Chemical reviews.

[34]  Z. Fayad,et al.  Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. , 2010, Bioconjugate chemistry.

[35]  C. R. Mayer,et al.  Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. , 2009, Journal of the American Chemical Society.

[36]  D. Parker,et al.  Development of responsive lanthanide probes for cellular applications. , 2010, Current opinion in chemical biology.

[37]  Joop A. Peters,et al.  Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra , 2001 .

[38]  M. Linton,et al.  Quantum dot mediated imaging of atherosclerosis , 2009, Nanotechnology.

[39]  Hans-Gerd Löhmannsröben,et al.  Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. , 2005, Angewandte Chemie.

[40]  Michael Busby,et al.  Functionalized Nanocontainers as Dual Magnetic and Optical Probes for Molecular Imaging Applications , 2008 .

[41]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[42]  Nicholas J Long,et al.  'Two is better than one'--probes for dual-modality molecular imaging. , 2009, Chemical communications.

[43]  Michel De Waard,et al.  Compact and highly stable quantum dots through optimized aqueous phase transfer , 2011, BiOS.

[44]  R. Kauppinen,et al.  Synthesis and spectroscopic properties of a prototype single molecule dual imaging agent comprising a heterobimetallic rhenium-gadolinium complex. , 2008, Journal of the American Chemical Society.

[45]  Ralph Weissleder,et al.  A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. , 2003, Cancer research.

[46]  S. Quici,et al.  NMR relaxometric study of new Gd(III) macrocyclic complexes and their interaction with human serum albumin. , 2004, Organic & biomolecular chemistry.

[47]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[48]  Hong Ding,et al.  Imaging pancreatic cancer using bioconjugated InP quantum dots. , 2009, ACS nano.

[49]  J. Platel,et al.  Transduction of the Scorpion Toxin Maurocalcine into Cells , 2005, Journal of Biological Chemistry.

[50]  Wolfgang J Parak,et al.  Labelling of cells with quantum dots , 2005, Nanotechnology.

[51]  Scott E. Fraser,et al.  Tracking Transplanted Stem Cell Migration Using Bifunctional, Contrast Agent-Enhanced, Magnetic Resonance Imaging , 2002, NeuroImage.

[52]  S Aime,et al.  pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. , 2001, Journal of the American Chemical Society.

[53]  M. Botta,et al.  Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. , 2007, Nano letters.

[54]  Éva Tóth,et al.  The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging , 2013 .

[55]  Luigi Biancone,et al.  Improved route for the visualization of stem cells labeled with a Gd‐/Eu‐Chelate as dual (MRI and fluorescence) agent , 2004, Magnetic resonance in medicine.

[56]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[57]  Nayoun Won,et al.  One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.