Simple Linear Comparison of Strings in V-order

In this paper we focus on a total (but non-lexicographic) ordering of strings called V-order. We devise a new linear-time algorithm for computing the V-comparison of two finite strings. In comparison with the previous algorithm in the literature, our algorithm is both conceptually simpler, based on recording letter positions in increasing order, and more straightforward to implement, requiring only linked lists.

[1]  William F. Smyth,et al.  Combinatorics of Unique Maximal Factorization Families (UMFFs) , 2009, Fundam. Informaticae.

[2]  William F. Smyth,et al.  Computing Patterns in Strings , 2003 .

[3]  Peter Sanders,et al.  Linear work suffix array construction , 2006, JACM.

[4]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[5]  William F. Smyth,et al.  String Comparison and Lyndon-Like Factorization Using V-Order in Linear Time , 2011, CPM.

[6]  David E. Daykin,et al.  Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems , 1985 .

[7]  Filippo Mignosi,et al.  Simple Real-Time Constant-Space String Matching , 2011, CPM.

[8]  D. E. Daykin,et al.  Ordering Integer Vectors for Coordinate Deletions , 1997 .

[9]  Shoshana Neuburger,et al.  The Burrows-Wheeler transform: data compression, suffix arrays, and pattern matching by Donald Adjeroh, Timothy Bell and Amar Mukherjee Springer, 2008 , 2010 .

[10]  Ge Nong,et al.  Linear Suffix Array Construction by Almost Pure Induced-Sorting , 2009, 2009 Data Compression Conference.

[11]  Gonzalo Navarro,et al.  Compressed full-text indexes , 2007, CSUR.

[12]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[13]  Jacqueline W. Daykin,et al.  Lyndon-like and V-order factorizations of strings , 2003, J. Discrete Algorithms.

[14]  W. F. Smyth,et al.  Optimal Algorithms for Computing the canonical form of a circular string , 1992, Theor. Comput. Sci..

[15]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[16]  Maxime Crochemore,et al.  Two-way string-matching , 1991, JACM.

[17]  Jacqueline W. Daykin,et al.  Properties and Construction of Unique Maximal Factorization Families for Strings , 2008, Int. J. Found. Comput. Sci..

[18]  Charlotte Truchet,et al.  Computation of words satisfying the "rhythmic oddity property" (after Simha Arom's works) , 2003, Inf. Process. Lett..

[19]  Srinivas Aluru,et al.  Space efficient linear time construction of suffix arrays , 2003, J. Discrete Algorithms.

[20]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[21]  Veli Mäkinen,et al.  Indexing Finite Language Representation of Population Genotypes , 2010, WABI.

[22]  Maxime Crochemore,et al.  A note on the Burrows - CWheeler transformation , 2005, Theor. Comput. Sci..

[23]  Costas S. Iliopoulos Optimal Cost Parallel Algorithms for Lexicographical Ordering , 1986 .

[24]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[25]  Jacques-Olivier Lachaud,et al.  Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..

[26]  William F. Smyth,et al.  A linear partitioning algorithm for Hybrid Lyndons using VV-order , 2013, Theor. Comput. Sci..