Minimax-robust prediction of discrete time series

SummaryWe discuss a robust approach for predicting a weakly stationary discrete time series whose spectral density f is not exactly known. We assume that we know that f∈ $$\mathfrak{D}$$ ), where $$\mathfrak{D}$$ is a convex set of spectral densities fulfilling some not too stringent conditions. We proof the existence of a “most indeterministic” density f0 in $$\mathfrak{D}$$ , and we show that the classical optimal linear predictor for a time series with spectral density f0 is mini-max-robust in the sense that it minimizes the maximal possible prediction error.We investigate some special models $$\mathfrak{D}$$ , and, in doing so, we illustrate a generally applicable method for determining the robust predictor. In particular, we discuss model sets $$\mathfrak{D}$$ which are defined by conditions on a finite part of the autocovariance sequence of the corresponding time series. These examples are of particular interest as the most indeterministic density is an autoregressive one, i.e. the robust predictor is finite. We discuss connections between this type of model set $$\mathfrak{D}$$ and maximum entropy and generalized maximum entropy spectral estimates.

[1]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[2]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[3]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes , 1957 .

[4]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[5]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes, II , 1958 .

[6]  Time series analysis, by E. J. Hannan. Methuen, London: Wiley, New York. 147 pp. $3.50 , 1961 .

[7]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[8]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[9]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[10]  E. J. Hannan,et al.  Multiple time series , 1970 .

[11]  R. Lacoss DATA ADAPTIVE SPECTRAL ANALYSIS METHODS , 1971 .

[12]  Adriaan van den Bos,et al.  Alternative interpretation of maximum entropy spectral analysis (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[13]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[14]  Michael M. Fitelson,et al.  Notes on maximum-entropy processing (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[15]  Marcello Pagano,et al.  When is an altoregressive scheme stationary , 1973 .

[16]  Marcello Pagano,et al.  WHEN IS AN AUTOREGRESSIVE SCHEME STATIONARY , 1973 .

[17]  E. Parzen Some recent advances in time series modeling , 1974 .

[18]  M. Morf,et al.  A classification of algorithms for ARMA models and ladder realizations , 1977 .

[19]  William I. Newman,et al.  Extension to the maximum entropy method , 1977, IEEE Trans. Inf. Theory.

[20]  J. Makhoul Stable and efficient lattice methods for linear prediction , 1977 .

[21]  B. Dickinson,et al.  Efficient solution of covariance equations for linear prediction , 1977 .

[22]  Yuzo Hosoya Robust Linear Extrapolations of Second-order Stationary Processes , 1978 .

[23]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[24]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[25]  R. Martin Robust Estimation for Time Series Autoregressions , 1979 .

[26]  Zeidler, E., Vorlesungen über nichtlineare Funktionalanalysis. III: Variationsmethoden und Optimierung. Teubner-Texte zur Mathematik. Leipzig, BSB B. G. Teubner Verlagsgesellschaft, 1978. 239 S., 54 Abb., 19, - M. Best.-Nr. 6658676 , 1980 .

[27]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[28]  H. Vincent Poor,et al.  Minimax-Robust Filtering and Finite-Length Robust Predictors , 1984 .

[29]  J. Franke ON THE ROBUST PREDICTION AND INTERPOLATION OF TIME SERIES IN THE PRESENCE OF CORRELATED NOISE , 1984 .

[30]  K. Vastola,et al.  Robust Wiener-Kolmogorov theory , 1984, IEEE Trans. Inf. Theory.