Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties

Nanoporous metals prepared by the corrosion of an alloy can take the form of monolithic, millimeter-sized bodies containing approximately 10 15 nanoscale ligaments per cubic millimeter. The ligament size can reach down to the very limits of stability of nanoscale objects. The processes by which nanoporous metals are formed have continued to be fascinating, even though their study in relation to surface treatment, metal refinement, and failure mechanisms can be traced back to ancient times. In fact, the prospect of using alloy corrosion as a means of making nanomaterials for fundamental studies and functional applications has led to a revived interest in the process. The quite distinct mechanical properties of nanoporous metals are one of the focus points of this interest, as relevant studies probe the deformation behavior of crystals at the lower end of the size scale. Furthermore, the coupling of bulk stress and strain to the forces acting along the surface of nanoporous metals provide unique opportunities for controlling the mechanical behavior through external variables such as the electrical or chemical potentials.

[1]  Y. Ivanisenko,et al.  Deforming nanoporous metal: Role of lattice coherency , 2009 .

[2]  L. Zepeda-Ruiz,et al.  Surface-chemistry-driven actuation in nanoporous gold. , 2009, Nature materials.

[3]  A. Dalton,et al.  Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors , 2008 .

[4]  D. Kramer,et al.  Sign-inverted surface stress-charge response in nanoporous gold , 2008 .

[5]  S. Gottschalk,et al.  A nanoparticulate indium tin oxide field-effect transistor with solid electrolyte gating , 2008, Nanotechnology.

[6]  D. Kramer,et al.  Surface stress-charge response of a (111)-textured gold electrode under conditions of weak ion adsorption. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[7]  Takeshi Fujita,et al.  Three-dimensional morphology of nanoporous gold , 2008 .

[8]  T. Balk,et al.  Microstructure, stability and thermomechanical behavior of crack-free thin films of nanoporous gold , 2008 .

[9]  T. Balk,et al.  A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking , 2008 .

[10]  M. L. Reed,et al.  The effects of annealing prior to dealloying on the mechanical properties of nanoporous gold microbeams , 2008 .

[11]  Fuqian Yang,et al.  Micro and nano mechanical testing of materials and devices , 2008 .

[12]  Y. Ivanisenko,et al.  Macroscopically Strong Nanoporous Pt Prepared by Dealloying , 2007 .

[13]  A. Minor,et al.  The mechanical behavior of nanoporous gold thin films , 2007 .

[14]  L. Zepeda-Ruiz,et al.  Mechanical response of freestanding Au nanopillars under compression , 2007 .

[15]  Mingwei Chen,et al.  Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation , 2007 .

[16]  M. L. Reed,et al.  The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures , 2007 .

[17]  D. Kramer,et al.  A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation , 2007 .

[18]  Cynthia A. Volkert,et al.  Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf , 2007 .

[19]  M. Mabuchi,et al.  Mechanical strength of nanoporous gold fabricated by dealloying , 2007 .

[20]  J. Kysar,et al.  Microfabrication and mechanical properties of nanoporous gold at the nanoscale , 2007 .

[21]  J. Erlebacher,et al.  Size dependence of effective Young’s modulus of nanoporous gold , 2007 .

[22]  F. Weigend,et al.  Structural relaxation in charged metal surfaces and cluster ions. , 2006, Small.

[23]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[24]  J. Erlebacher,et al.  Length scales in alloy dissolution and measurement of absolute interfacial free energy , 2006, Nature materials.

[25]  L. Zepeda-Ruiz,et al.  Size effects on the mechanical behavior of nanoporous Au. , 2006, Nano letters.

[26]  Cynthia A. Volkert,et al.  Approaching the theoretical strength in nanoporous Au , 2006 .

[27]  J. Erlebacher,et al.  Volume change during the formation of nanoporous gold by dealloying. , 2006, Physical review letters.

[28]  D. Kramer,et al.  Tuneable magnetic susceptibility of nanocrystalline palladium , 2006 .

[29]  H. P. Lee,et al.  Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires , 2006, Nanotechnology.

[30]  Jianbin Xu,et al.  Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy , 2006 .

[31]  A. Hamza,et al.  Scaling equation for yield strength of nanoporous open-cell foams , 2006 .

[32]  R. Newman,et al.  Synthesis of tough nanoporous metals by controlled electrolytic dealloying , 2006 .

[33]  R. Würschum,et al.  Electrically tunable resistance of a metal. , 2006, Physical review letters.

[34]  Masataka Hakamada,et al.  Nanoporous gold prism microassembly through a self-organizing route. , 2006, Nano letters.

[35]  J. Kysar,et al.  Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold , 2006 .

[36]  Bhushan Lal Karihaloo,et al.  Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress , 2005 .

[37]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[38]  J. Satcher,et al.  Nanoporous Au: A high yield strength material , 2005 .

[39]  D. Kramer,et al.  Reversible Strain in Porous Metals Charged in Electrolytes , 2005 .

[40]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[41]  Xavier Borrisé,et al.  Size effect on Young's modulus of thin chromium cantilevers , 2004 .

[42]  J. Erlebacher An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior , 2004 .

[43]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[44]  D. Kramer,et al.  Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers , 2004 .

[45]  U. Ramamurty,et al.  Mechanical property extraction through conical indentation of a closed-cell aluminum foam , 2004 .

[46]  Depth-sensing indentation response of ordered silica foam , 2004 .

[47]  M. Esashi,et al.  Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus , 2003 .

[48]  Ken Gall,et al.  Surface-stress-induced phase transformation in metal nanowires , 2003, Nature materials.

[49]  Sean G. Corcoran,et al.  A Steady-State Method for Determining the Dealloying Critical Potential , 2003 .

[50]  H. Gleiter,et al.  Charge-Induced Reversible Strain in a Metal , 2003, Science.

[51]  M. Scanlon,et al.  Compressive elastic modulus and its relationship to the structure of a hydrated starch foam , 2003 .

[52]  L. Gibson,et al.  Size effects in ductile cellular solids. Part II : experimental results , 2001 .

[53]  J. Gilman,et al.  Nanotechnology , 2001 .

[54]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[55]  H. Gleiter,et al.  Nanocrystalline materials: a way to solids with tunable electronic structures and properties? , 2001 .

[56]  Lorna J. Gibson,et al.  Failure of aluminum foams under multiaxial loads , 2000 .

[57]  Ronald E. Miller A continuum plasticity model for the constitutive and indentation behaviour of foamed metals , 2000 .

[58]  B. Malki,et al.  Comprehensive Dissolution Current Noise Analysis during Stress Corrosion Cracking of Cu3Au Alloys , 1999 .

[59]  M. E. Gurtin,et al.  A general theory of curved deformable interfaces in solids at equilibrium , 1998 .

[60]  Lorna J. Gibson,et al.  Aluminum foams produced by liquid-state processes , 1998 .

[61]  J. Cahn,et al.  Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids , 1997 .

[62]  K. Sieradzki,et al.  Film-Induced Brittle Intergranular Cracking of Silver-Gold Alloys , 1996 .

[63]  J. Hirth,et al.  Shape of hollow dislocation cores , 1994 .

[64]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[65]  K. Sieradzki Curvature effects in alloy dissolution , 1993 .

[66]  C. Nan Physics of inhomogeneous inorganic materials , 1993 .

[67]  R. Newman,et al.  Testing the film-induced cleavage model of stress-corrosion cracking , 1993 .

[68]  R. Newman A theory of secondary alloying effects on corrosion and stress-corrosion cracking , 1992 .

[69]  Li,et al.  Ductile-brittle transition in random porous Au. , 1992, Physical review letters.

[70]  H. Pickering,et al.  Selective Anodic Dissolution of Cu‐Au Alloys: TEM and Current Transient Study , 1991 .

[71]  R. Kelly,et al.  Brittle fracture of an Au/Ag alloy induced by a surface film , 1991 .

[72]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[73]  H. Pickering,et al.  The difference in the electrochemical behavior of the ordered and disordered phases of Cu3Au , 1989 .

[74]  K. Sieradzki,et al.  Computer simulations of corrosion: Selective dissolution of binary alloys , 1989 .

[75]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[76]  K. Sieradzki,et al.  Direct electrochemical measurement of dezincification including the effect of alloyed arsenic , 1988 .

[77]  R. C. Newman,et al.  The Relationship Between Dealloying and Transgranular Stress-Corrosion Cracking of Cu-Zn and Cu-Al Alloys , 1987 .

[78]  K. Sieradzki,et al.  Stress-corrosion cracking , 1987 .

[79]  Younggy Kim,et al.  De-alloying at elevated temperatures and at 298 k-similarities and differences , 1982 .

[80]  A. J. Forty,et al.  Oxide formation during the selective dissolution of silver from silver-gold alloys in nitric acid , 1982 .

[81]  G. Rowlands,et al.  A possible model for corrosion pitting and tunneling in noble-metal alloys , 1981 .

[82]  A. J. Forty,et al.  A micromorphological study of the dissolution of silver-gold alloys in nitric acid , 1980 .

[83]  A. J. Forty Corrosion micromorphology of noble metal alloys and depletion gilding , 1979, Nature.

[84]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[85]  K. Johnson,et al.  Indentation of foamed plastics , 1975 .

[86]  H. Pickering Formation of New Phases during Anodic Dissolution of Zn‐Rich Cu ‐ Zn Alloys , 1970 .

[87]  H. Pickering Stress Corrosion via Localized Anodic Dissolution in Cu-Au Alloys , 1969 .

[88]  C. Wagner,et al.  Electrolytic Dissolution of Binary Alloys Containing a Noble Metal , 1967 .

[89]  L. Reti Parting of Gold and Silver with Nitric Acid in a Page of the Codex Atlanticus of Leonardo da Vinci , 1965, Isis.

[90]  V. Lucey The Mechanism of Dezincification and the Effect of Arsenic. I. , 1965 .

[91]  S. Gialanella,et al.  Corrosion , 1941, Aerospace Alloys.

[92]  F. Beamish,et al.  Nitric acid parting of silver assay beads , 1938 .

[93]  L. Rayleigh,et al.  XVI. On the instability of a cylinder of viscous liquid under capillary force , 1892 .

[94]  J. CLERK MAXWELL,et al.  Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires, , 1874, Nature.