Influence of temperature and environment on fatigue crack propagation in a TiAl-based alloy

[1]  R. Ritchie,et al.  On the anomalous temperature dependence of fatigue-crack growth in γ-based titanium aluminides , 1997 .

[2]  J. M. Larsen,et al.  Mechanisms of ambient temperature fatigue crack growth in Ti−46.5Al−3Nb−2Cr−0.2W , 1997 .

[3]  J. Mendez,et al.  Determination of young's modulus by a resonant technique applied to two dynamically ion mixed thin films , 1997 .

[4]  P. Bowen,et al.  Fatigue crack propagation resistance of a Ti48Al2Mn2Nb alloy in the as-cast condition , 1996 .

[5]  Michael P. Brady,et al.  The oxidation and protection of gamma titanium aluminides , 1996 .

[6]  M. Schütze,et al.  TEM investigations of the early stages of TiAl oxidation , 1996 .

[7]  W. Soboyejo,et al.  Mechanisms of fatigue crack growth in Ti-48Al at ambient and elevated temperature , 1995 .

[8]  C. Liu,et al.  Kinetic and equilibrium effects in the environmental embrittlement of ordered intermetallics , 1995 .

[9]  Robert O. Ritchie,et al.  High-temperature fatigue-crack growth behavior in a two-phase (γ + α2) TiAl intermetallic alloy , 1995 .

[10]  J. Petit,et al.  On fatigue crack propagation enhancement by a gaseous atmosphere: Experimental and theoretical aspects , 1995 .

[11]  D. Duquette Environmental resistance of intermetallic compounds and composite materials , 1995 .

[12]  Y. Mutoh,et al.  Effects of chromium addition on the sustained-load cracking characteristics of gamma-base titanium aluminides , 1995 .

[13]  Y. W. Kim,et al.  Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures , 1995 .

[14]  Y. Mutoh,et al.  High-temperature strength and fracture toughness in γ-phase titanium aluminides , 1993, Journal of Materials Science.

[15]  K. Chan,et al.  Failure diagrams for unidirectional , 1993, Metallurgical and Materials Transactions A.

[16]  D. Davidson,et al.  Fatigue crack growth through , 1993, Metallurgical and Materials Transactions A.

[17]  H. Inui,et al.  Environmental effects on the room temperature ductility of polysynthetically twinned (PST) crystals of TiAl , 1993 .

[18]  K. Chan Toughening mechanisms in titanium aluminides , 1993 .

[19]  W. Soboyejo,et al.  Investigation of room- and elevated-temperature fatigue crack growth in Ti48Al , 1991 .

[20]  G. W. Simmons,et al.  Recent progress in understanding environment assisted fatigue crack growth , 1981 .

[21]  D. Shechtman,et al.  The deformation and fracture of TiAl at elevated temperatures , 1975 .

[22]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[23]  Johannes Weertman,et al.  Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane , 1966 .

[24]  C. Sarrazin-Baudoux,et al.  Gaseous Atmosphere Influence on Fatigue Crack Propagation , 1997 .

[25]  J. Petit,et al.  Environmental influence on fatigue crack propagation in TiAl alloys , 1997 .

[26]  Roderick A. Smith,et al.  Reliability Assessment of Cyclically Loaded Engineering Structures , 1997 .

[27]  P. F. Browning,et al.  Oxidation Mechanisms in Relation to High Temperature Crack Propagation Properties of Alloy 718 in H2/H2O/Inert Gas Environment , 1997 .

[28]  Kwai S. Chan,et al.  Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy , 1997 .

[29]  Subra Suresh,et al.  Fatigue crack growth threshold concepts , 1984 .