Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

To my mom, Mei, my wife, Nan and in memory of my grandma, Yanqing for all of your love iii ACKNOWLEDGEMENTS I would like to thank Prof. Stanley Reeves of Auburn university who provided help with the implementation of Generalized Cross Validation (GCV). There are many helpful feedbacks from the readers of our papers. For example, Lalaké Apoyan pointed out the scintillation effects of turbulence. Mathworks, Philips Research Lab for offering me the internships during my degree program. Very special thanks go to Dr. Steven Simske from HP lab for his support and encouragement throughout my program. loved, encouraged, and motivated me through all the ups and downs in my life. They had confidence in me when I had little confidence in myself. I thank my dogs, Kelly, Vanilla and Cookie for making our lives more enjoyable.

[1]  Mark R. Swain,et al.  Effects of Atmospheric Water Vapor on Infrared Interferometry , 2004 .

[2]  B. C. McCallum Blind deconvolution by simulated annealing , 1990 .

[3]  A. Lambert,et al.  Atmospheric turbulence visualization with wide-area motion-blur restoration , 1999 .

[4]  Deepa Kundur,et al.  Blind image deconvolution revisited , 1996 .

[5]  Reginald L. Lagendijk,et al.  Identification and restoration of noisy blurred images using the expectation-maximization algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[7]  George Wolberg,et al.  Digital image warping , 1990 .

[8]  Subhasis Chaudhuri,et al.  A recursive algorithm for maximum likelihood-based identification of blur from multiple observations , 1998, IEEE Trans. Image Process..

[9]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[10]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[11]  B. Roy Frieden Turbulent image reconstruction using object power spectrum information , 1994 .

[12]  Mark J. T. Smith,et al.  A new method for suppressing optical turbulence in video , 2005, 2005 13th European Signal Processing Conference.

[13]  B. R. Frieden,et al.  Turbulent image reconstruction from a superposition model , 1993 .

[14]  Richard G. Lane,et al.  Blind deconvolution of noisy complex-valued image , 1989 .

[15]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[16]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[17]  Vladimir S. Petrovic,et al.  Gradient-based multiresolution image fusion , 2004, IEEE Transactions on Image Processing.

[18]  D. Gennery Determination of optical transfer function by inspection of frequency-domain plot , 1973 .

[19]  Julien Borgnino,et al.  Contribution to the space–time study of stellar speckle patterns , 1986 .

[20]  Robert W. Heath,et al.  Blurs and perfect image restoration , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[21]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[22]  Ling Guan,et al.  A recursive soft-decision approach to blind image deconvolution , 2003, IEEE Trans. Signal Process..

[23]  Richard W. Hamming,et al.  Numerical Methods for Scientists and Engineers , 1962 .

[24]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[25]  A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images , 1970 .

[26]  Mark J. T. Smith,et al.  Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[27]  J. C. Fontanella,et al.  Reconstruction of turbulence-degraded images using the Knox–Thompson algorithm , 1987 .

[28]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[29]  Elliott Horch,et al.  Speckle imaging in astronomy , 1995, Int. J. Imaging Syst. Technol..

[30]  M. Shao,et al.  Atmospheric phase measurements with the Mark III stellar interferometer. , 1987, Applied optics.

[31]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[32]  G Harikumar,et al.  Exact image deconvolution from multiple FIR blurs , 1999, IEEE Trans. Image Process..

[33]  R. Mersereau,et al.  Optimal estimation of the regularization parameter and stabilizing functional for regularized image restoration , 1990 .

[34]  Lam,et al.  Iterative statistical approach to blind image deconvolution , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Michael C. Roggemann,et al.  Constrained least-squares estimation in deconvolution from wave-front sensing , 1998 .

[36]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[37]  Steven J. Simske,et al.  Blind image deconvolution using support vector regression , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[38]  Tianxu Zhang,et al.  Restoration algorithms for turbulence-degraded images based on optimized estimation of discrete values of overall point spread functions , 2005 .

[39]  Mads Nielsen,et al.  The Generic Structure of the Optic Flow Field , 2005, Journal of Mathematical Imaging and Vision.

[40]  Patrizio Campisi,et al.  Multichannel blind image deconvolution using the Bussgang algorithm: spatial and multiresolution approaches , 2003, IEEE Trans. Image Process..

[41]  Naoshi Baba,et al.  Extended-object reconstruction with sequential use of the iterative blind deconvolution method , 1992 .

[42]  A. Murat Tekalp,et al.  Identification of image and blur parameters for the restoration of noncausal blurs , 1986, IEEE Trans. Acoust. Speech Signal Process..

[43]  A. Murat Tekalp,et al.  Maximum likelihood image and blur identification: a unifying , 1990 .

[44]  Jan Flusser,et al.  Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..

[45]  Ngai-Fong Law,et al.  Blind deconvolution using least squares minimisation , 1996 .

[46]  B. L. Ellerbroek,et al.  Adaptive wavefront control algorithms for closed loop adaptive optics , 2001 .

[47]  Nikolas P. Galatsanos,et al.  A variational approach for Bayesian blind image deconvolution , 2004, IEEE Transactions on Signal Processing.

[48]  THE OPTICAL SOCIETY OF AMERICA , 1923 .

[49]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[50]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[51]  B. Wirnitzer Bispectral analysis at low light levels and astronomical speckle masking , 1985 .

[52]  K. Knox,et al.  Recovery of Images from Atmospherically Degraded Short-Exposure Photographs , 1974 .

[53]  Michael W. Marcellin,et al.  Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery , 1998 .

[54]  Steven J. Simske,et al.  Blur identification based on kurtosis minimization , 2005, IEEE International Conference on Image Processing 2005.

[55]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[56]  H. Panofsky,et al.  Atmospheric Turbulence: Models and Methods for Engineering Applications , 1984 .

[57]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[58]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[59]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[60]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[61]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[62]  Philip J. Morrow,et al.  Adaptive Grid Refinement Procedures for Efficient Optical Flow Computation , 2004, International Journal of Computer Vision.

[63]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[64]  Russell M. Mersereau,et al.  Blur identification by the method of generalized cross-validation , 1992, IEEE Trans. Image Process..

[65]  Joshua Gluckman jgluckma Kurtosis and the Phase Structure of Images , 2003 .

[66]  Shang-Hong Lai,et al.  Reliable and Efficient Computation of Optical Flow , 1998, International Journal of Computer Vision.

[67]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[68]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 2004, International Journal of Computer Vision.

[69]  R. Hufnagel,et al.  Modulation Transfer Function Associated with Image Transmission through Turbulent Media , 1964 .

[70]  Aggelos K. Katsaggelos,et al.  Maximum likelihood blur identification and image restoration using the EM algorithm , 1991, IEEE Trans. Signal Process..

[71]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[72]  Hung-Ta Pai,et al.  On eigenstructure-based direct multichannel blind image restoration , 2001, IEEE Trans. Image Process..

[73]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[74]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Jacqueline Le Moigne,et al.  Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient , 2003, IEEE Trans. Image Process..

[76]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[77]  Tadao Ichikawa A Pyramidal Representation of Images and Its Feature Extraction Facility , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Jan Flusser,et al.  Multichannel blind deconvolution of spatially misaligned images , 2005, IEEE Transactions on Image Processing.

[79]  T. Barnwell,et al.  A procedure for designing exact reconstruction filter banks for tree-structured subband coders , 1984, ICASSP.

[80]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[81]  Michael W. Marcellin,et al.  Iterative multiframe super-resolution algorithms for atmospheric turbulence-degraded imagery , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[82]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[83]  A. Lohmann,et al.  Speckle masking in astronomy: triple correlation theory and applications. , 1983, Applied optics.

[84]  Richard G. Lane,et al.  Blind deconvolution of speckle images , 1992 .

[85]  Aggelos K. Katsaggelos,et al.  Bayesian multichannel image restoration using compound Gauss-Markov random fields , 2003, IEEE Trans. Image Process..

[86]  Dalong Li,et al.  Blind image deconvolution using constrained variance maximization , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..