Numerical Analysis of Fifth-Harmonic Conversion of Low-Power Pulsed Nd:YAG Laser with Resonance of Second Harmonic

A model for the fifth-harmonic generation of pulsed IR lasers involving an external ring cavity resonating at the second harmonic has been developed. Numerical analysis is performed to show the relative effects of the pulse delay, input polarization, and orientation of the nonlinear crystals on the fifth harmonic power. The results are validated by published experimental results. The model is used to analyze and obtain the optimal combination of nonlinear optical crystals for the fifth-harmonic generation. Our calculation shows that the combination of LiB3O5 (LBO), CsLiB6O10 (CLBO), and CLBO crystals for the second-harmonic, fourth-harmonic, and fifth-harmonic generation steps respectively gives an approximate conversion of 30% from the fundamental to the fifth harmonic power, resulting in 2 W at 213 nm for an input of 7 W at 1064 nm.