Mantle Phase Changes Detected From Stochastic Tomography

Stochastic tomography, made possible by dense deployments of seismic sensors, is used to identify phase changes in Earth's mantle that occur over depth intervals. This technique inverts spatial coherences of amplitudes and travel times of body waves to determine the depth and dependence of the spatial spectrum of seismic velocity. This spectrum is interpreted using the predicted thermodynamic stability of mineral composition and phase as a function of temperature and pressure, in which the metamorphic temperature derivative of seismic velocities is used as a proxy for the effects of heterogeneity induced in a region undergoing a phase change. Peaks in the temperature derivative of seismic velocity closely match those found from applying stochastic tomography to elements of Earthscope and Flex arrays. Within ±12 km, peaks in the fluctuation of P velocity at 425, 500, and 600 km depth beneath the western US agree with those predicted by a mechanical mixture of harzburgite and basalt, 180 K cooler than a 1600 K adiabat in the mantle transition zone. A broad peak at 250 km depth may be associated with chemical heterogeneity induced by dehydration of subducted oceanic sediments, and a peak at 775 km depth with a phase change in subducted basalt. Non‐detection of predicted phase changes less than 10 km in width is consistent with the resolution possible with the seismic arrays used in the inversion, including the sharp endothermic phase change near 660 km. These interpretations are consistent with the known history of plate subduction beneath North America.

[1]  T. Katsura A Revised Adiabatic Temperature Profile for the Mantle , 2022, Journal of Geophysical Research: Solid Earth.

[2]  K. Selway,et al.  Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred From Seismic and Magnetotelluric Data , 2022, Journal of Geophysical Research: Solid Earth.

[3]  M. Moorkamp Deciphering the state of the lower crust and upper mantle with multi-physics inversion , 2021 .

[4]  L. Stixrude,et al.  Thermal Expansivity, Heat Capacity, and Bulk Modulus of the Mantle , 2021, Geophysical Journal International.

[5]  J. Buchen Seismic Wave Velocities in Earth's Mantle from Mineral Elasticity , 2021 .

[6]  S. Cottaar,et al.  Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots , 2021 .

[7]  global sci Heterogeneity Spectrum of Earth’s Upper Mantle Obtained from the Coherence of Teleseismic PWaves , 2020 .

[8]  Zhongqing Wu,et al.  Elasticity of akimotoite under the mantle conditions: Implications for multiple discontinuities and seismic anisotropies at the depth of ∼600–750 km in subduction zones , 2019 .

[9]  Yingcai Zheng,et al.  Seismic Evidence for Plume‐Slab Interaction by High‐Resolution Imaging of the 410‐km Discontinuity Under Tonga , 2019, Geophysical Research Letters.

[10]  Takafumi D. Yamamoto,et al.  Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition , 2019, Nature Geoscience.

[11]  A. Deuss,et al.  Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3-D velocity corrections , 2019, Geophysical Journal International.

[12]  J. O’Donnell,et al.  A small, unextractable melt fraction as the cause for the low velocity zone , 2019, Earth and Planetary Science Letters.

[13]  L. Vinnik Receiver Function Seismology , 2019, Izvestiya, Physics of the Solid Earth.

[14]  S. Zhong,et al.  Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone , 2018, Nature Geoscience.

[15]  S. Lee,et al.  HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone , 2018, Geochemistry, Geophysics, Geosystems.

[16]  G. Steinle‐Neumann,et al.  Journal of Geophysical Research: Solid Earth MMA-EoS: A Computational Framework for Mineralogical Thermodynamics , 2018 .

[17]  P. Shearer,et al.  Constraints on the heterogeneity spectrum of Earth's upper mantle , 2016 .

[18]  H. Silvennoinen,et al.  The lithosphere, LAB, LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions , 2016 .

[19]  J. Trampert,et al.  The effect of topography of upper-mantle discontinuities on SS precursors , 2015 .

[20]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[21]  S. Myers,et al.  LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction , 2012 .

[22]  Michael Fehler,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .

[23]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[24]  Lars Stixrude,et al.  Geophysics of Chemical Heterogeneity in the Mantle , 2012 .

[25]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[26]  B. Kennett,et al.  Steep reflections from the earth's core reveal small-scale heterogeneity in the upper mantle , 2010 .

[27]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[28]  Jennifer Andrews,et al.  Detailed nature of the 660 km region of the mantle from global receiver function data , 2008 .

[29]  Ru-Shan Wu,et al.  Theory of Transmission Fluctuations in Random Media with a Depth‐Dependent Background Velocity Structure , 2008 .

[30]  S. Ono The Lehmann Discontinuity Due to Dehydration of Subducted Sediment , 2007 .

[31]  Yingcai Zheng,et al.  Pervasive Seismic Wave Reflectivity and Metasomatism of the Tonga Mantle Wedge , 2007, Science.

[32]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[33]  A. Levander,et al.  Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions , 2005 .

[34]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[35]  V. Farra,et al.  Lehmann discontinuity beneath North America: No role for seismic anisotropy , 2005 .

[36]  D. Giardini,et al.  One-dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints , 2005 .

[37]  P. Earle,et al.  Survey of precursors to P'P': Fine structure of mantle discontinuities , 2003 .

[38]  D. Giardini,et al.  Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images , 2002 .

[39]  Luděk Klimeš,et al.  Correlation Functions of Random Media , 2002 .

[40]  D. Yuen,et al.  Bullen’s parameter η: a link between seismology and geodynamical modelling , 2002 .

[41]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[42]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[43]  F. Seifert,et al.  Metastability of enstatite in deep subducting lithosphere , 1994, Nature.

[44]  David J. Stevenson,et al.  Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle , 1993, Nature.

[45]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[46]  S. Karato On the Lehmann discontinuity , 1992 .

[47]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[48]  Xiao‐Bi Xie,et al.  Numerical tests of stochastic tomography , 1991 .

[49]  Ru-Shan Wu,et al.  Transmission fluctuations across an array and heterogeneities in the crust and upper mantle , 1990 .

[50]  D. L. Anderson Theory of Earth , 2014 .

[51]  A. J. Anderson,et al.  Convection in the Earth's mantle , 1984 .

[52]  John R. Evans,et al.  Running median filters and a general despiker , 1982 .

[53]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[54]  D. Helmberger,et al.  The upper mantle P velocity structure of the western United States , 1978 .

[55]  S. Solomon Geophysical constraints on radial and lateral temperature variations in the upper mantle , 1976 .

[56]  D. L. Anderson,et al.  Reflection of P′P′ seismic waves from discontinuities in the mantle , 1970 .

[57]  I. Lehmann S and the Structure of the Upper Mantle , 1961 .