Modeling Radar Attenuation by a Low Melting Layer With Optimized Model Parameters at C-Band

At northern latitudes, it is not uncommon for a melting layer of precipitation to touch or be close to the ground. For a low elevation angle, radio waves from a surveillance weather radar scan can travel a long distance through a melting layer. The resulting attenuation can be significant and must be taken into account when radar observations are interpreted. In this paper, we use a melting layer model to derive the relations between the specific attenuation caused by propagation through a melting layer and the reflectivity factor associated with this layer. The relations derived in this paper are based on modeled attenuation values for a variety of conditions and input parameters, i.e., rain rate, snow density, and rain drop size distribution parameters. The model parameters were constrained by vertically pointing Doppler C-band radar measurements of two events. The fitting procedure is presented for two different cases, of unrimed and rimed snow, and case-specific estimates of the expected attenuation of the horizontal scanning are suggested. Based on measurements of precipitation collected on December 10, 2011, by the University of Helsinki Kumpula radar, we also demonstrate that radar signal attenuation due to propagation through a low melting layer can be on the order of 7 dB or higher over a distance of 40 km.

[1]  N. Yoshizawa,et al.  Observation on Microphysical Processes in the Stratiform Precipitations Including Melting Layers at Mt. Fuji , 1985 .

[2]  Jian Zhang,et al.  A Real-Time Algorithm for the Correction of Brightband Effects in Radar-Derived QPE , 2010 .

[3]  Wim Klaassen,et al.  Attenuation and reflection of radio waves by a melting layer of precipitation , 1990 .

[4]  T. Matsuo,et al.  Melting of snow flakes below freezing level in the atmosphere , 1981 .

[5]  Jerry M. Straka,et al.  Testing a Procedure for Automatic Classification of Hydrometeor Types , 2001 .

[6]  I. Zawadzki,et al.  Modeling of the Melting Layer. Part IV: Brightband Bulk Parameterization , 2008 .

[7]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[8]  J. Awaka,et al.  Microphysical Processes of Melting Snowflakes Detected by Two-wavelength Radar: Part II. Application of Two-wavelength Radar Technique@@@第II部二波長レーダー法の応用 , 1984 .

[9]  P. D. Toit Doppler Radar Observation of Drop Sizes in Continuous Rain , 1967 .

[10]  Herman Russchenberg,et al.  Backscattering by and propagation through the melting layer of precipitation: a new polarimetric model , 1996, IEEE Trans. Geosci. Remote. Sens..

[11]  Christian Mätzler,et al.  Thermal Microwave Radiation: Applications for Remote Sensing , 2006 .

[12]  Dong-Bin Shin,et al.  Constraining Microwave Brightness Temperatures by Radar Brightband Observations , 2003 .

[13]  A. Bemis,et al.  A QUANTITATIVE STUDY OF THE “BRIGHT BAND” IN RADAR PRECIPITATION ECHOES , 1950 .

[14]  Craig F. Bohren,et al.  Radar Backscattering of Microwaves by Spongy Ice Spheres. , 1982 .

[15]  Herman W. J. Russchenberg,et al.  Simulations of Doppler spectra in the melting layer of precipitation , 2003 .

[16]  Frédéric Fabry,et al.  Modeling of the Melting Layer. Part II: Electromagnetic , 1999 .

[17]  P. Bauer,et al.  A Melting-Layer Model for Passive/Active Microwave Remote Sensing Applications. Part I: Model Formulation and Comparison with Observations , 2001 .

[18]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[19]  Sergey Y. Matrosov,et al.  A Polarimetric Radar Approach to Identify Rain, Melting-Layer, and Snow Regions for Applying Corrections to Vertical Profiles of Reflectivity , 2007 .

[20]  Warner L. Ecklund,et al.  A New Look at the Melting Layer , 1996 .

[21]  V. Chandrasekar,et al.  Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Isztar Zawadzki,et al.  Modeling of the melting layer. Part I : Dynamics and microphysics , 1999 .

[23]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[24]  Erkki Salonen,et al.  Predictions of radiowave attenuations due to a melting layer of precipitation , 1994 .

[25]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[26]  E. Barthazy,et al.  Fall velocity of snowflakes of different riming degree and crystal types , 2006 .

[27]  Robert Meneghini,et al.  Effective Dielectric Constants of Mixed-Phase Hydrometeors , 2000 .

[28]  J. Allnutt,et al.  Online Journal of Space Communication a Prediction Model That Combines Rain Attenuation and Other Propagation Impairments along Earth- Satellite Paths , 2022 .

[29]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[30]  Frédéric Fabry,et al.  Modeling of the Melting Layer. Part III: The Density Effect , 2005 .

[31]  Sergey Y. Matrosov,et al.  Assessment of Radar Signal Attenuation Caused by the Melting Hydrometeor Layer , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  A. R. Holt,et al.  A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes , 1995 .

[33]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[34]  T. Matsuo,et al.  Empirical formula for the melting rate of snowflakes , 1981 .

[35]  T. Ohtake Observations of Size Distributions of Hydrometeors Through the Melting Layer , 1969 .

[36]  Leo P. Ligthart,et al.  Effective permittivity of and scattering from wet snow and ice droplets at weather radar wavelengths , 1990 .

[37]  Liang Liao,et al.  On modeling air/spaceborne Radar returns in the melting layer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[38]  V. Chandrasekar,et al.  Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification , 2000 .

[39]  Andrew J. Heymsfield,et al.  Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation , 1989 .

[40]  Melting-layer modelling at C-Band , 2010 .

[41]  Wei Huang,et al.  The Modified Gamma Size Distribution Applied to Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions , 2011 .

[42]  A. W. Dissanayake,et al.  Radar and attenuation properties of rain and bright band , 1978 .

[43]  Hiroshi Tanaka,et al.  Microphysical Processes of Melting Snowflakes Detected by Two-Wavelength Radar: Part I. Principle of Measurement Based on Model Calculation@@@第I部モデル計算に基づく測定の原理 , 1984 .

[44]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[45]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[46]  Robert Meneghini,et al.  Comparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical Method , 1996 .

[47]  Jussi Leinonen,et al.  A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations , 2012 .

[48]  Frédéric Fabry,et al.  Measurements of melting layer attenuation at X‐band frequencies , 1997 .

[49]  J. J. Schlesak,et al.  Melting layer attenuation at 28.6 GHz from simultaneous comstar beacon and polarisation diversity radar data , 1981 .

[50]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .