Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [Invited]

This article deals with the recent advances in photochemistry in optical materials induced by femtosecond laser pulses. The field of investigation of this paper is limited to bulk solid isotropic transparent materials (glasses and polymers), specifically tailored with photoactive agents. The formation mechanisms of laser-induced color centers, nanoclusters, nanoparticles and nanocrystallites are reviewed and argued, in particular the influence of the temperature during or after the laser irradiation. The relation between the photo-induced structures and the optical property modifications are discussed, as well as some applications.

[1]  B Luther-Davies,et al.  Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. , 2006, Physical review letters.

[2]  G. Yu,et al.  High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass , 2011 .

[3]  Robin H. A. Ras,et al.  Fluorescent silver nanoclusters. , 2011, Nanoscale.

[4]  Kazuyuki Hirao,et al.  Femtosecond laser-induced microfeatures in glasses and their applications , 2008 .

[5]  Jinhai Si,et al.  Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser , 2001 .

[6]  Hiroaki Misawa,et al.  Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica , 1999 .

[7]  H. Hofmeister,et al.  Morphological Changes of Silver Nanoparticle Distributions in Glass Induced by Ultrashort Laser Pulses , 2000 .

[8]  Johan Hofkens,et al.  Optical Encoding of Silver Zeolite Microcarriers , 2010, Advanced materials.

[9]  Koji Sugioka,et al.  3-D microstructuring inside photosensitive glass by femtosecond laser excitation , 2003 .

[10]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[11]  K Miura,et al.  Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. , 2007, Optics express.

[12]  E. Mazur,et al.  Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .

[13]  Tsuneo Mitsuyu,et al.  Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser , 1999 .

[14]  Lionel Canioni,et al.  Silver Clusters Embedded in Glass as a Perennial High Capacity Optical Recording Medium , 2010, Advanced materials.

[15]  I. Bennion,et al.  Investigation of Ultrafast Laser--Photonic Material Interactions: Challenges for Directly Written Glass Photonics , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  G. Seifert,et al.  Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation , 2009 .

[17]  T. M. Bernhardt,et al.  Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix , 2006 .

[18]  J. Qiu,et al.  Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass , 2006 .

[19]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[20]  K. Miura,et al.  Emission mechanism of radiophotoluminescence in Ag-doped phosphate glass , 2010 .

[21]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[22]  P. Corkum,et al.  Ultrashort pulse non-linear optical absorption in transparent media. , 2005, Optics express.

[23]  Michel Meunier,et al.  Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser , 2006 .

[24]  K. Hirao,et al.  Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses , 2004 .

[25]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[26]  J. Baumberg,et al.  Embedded anisotropic microreflectors by femtosecond-laser nanomachining , 2002 .

[27]  J. Qiu,et al.  Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass. , 2009, Optics letters.

[28]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[29]  Guillaume Petite,et al.  Dynamics of femtosecond laser interactions with dielectrics , 2004 .

[30]  Eric Mazur,et al.  Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses , 2001 .

[31]  G. Seifert,et al.  Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes , 2009 .

[32]  Jan Siegel,et al.  In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics , 2010 .

[33]  T. Kurobori,et al.  Assignments and optical properties of X-ray-induced colour centres in blue and orange radiophotoluminescent silver-activated glasses , 2011 .

[34]  B. Stegemann,et al.  Femtosecond-laser-activated fluorescence from silver oxide nanoparticles , 2004 .

[35]  Martin Richardson,et al.  3D Patterning at the Nanoscale of Fluorescent Emitters in Glass , 2010 .

[36]  Martin Richardson,et al.  Luminescence properties of silver zinc phosphate glasses following different irradiations , 2009 .

[37]  Tsuneo Mitsuyu,et al.  Three-dimensional arrays of crystallites within glass by using non-resonant femtosecond pulses , 1999 .

[38]  Amin Abdolvand,et al.  Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles , 2005 .

[39]  Klaus Sokolowski-Tinten,et al.  Multiphoton ionization in dielectrics: comparison of circular and linear polarization. , 2006 .

[40]  Chongjun Zhao,et al.  Controllable precipitation and dissolution of silver nanoparticles in ultrafast laser pulses irradiated Ag+-doped phosphate glass. , 2004, Optics express.

[41]  K Miura,et al.  Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. , 2000, Optics letters.

[42]  J. Qiu,et al.  Fluorescent Ag nanoclusters in glass induced by an infrared femtosecond laser , 2007 .

[43]  G. Seifert,et al.  Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix , 2000 .

[44]  L. Glebov,et al.  Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses , 2009 .

[45]  Jeffrey A. Squier,et al.  High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging , 2001 .

[46]  Yasuhiko Shimotsuma,et al.  Micromodification of element distribution in glass using femtosecond laser irradiation. , 2009, Optics letters.

[47]  Martin Richardson,et al.  Femtosecond laser structuring and optical properties of a silver and zinc phosphate glass , 2010 .

[48]  P. Corkum,et al.  Hole-assisted energy deposition in dielectrics and clusters in the multiphoton regime , 2005 .

[49]  K. Miura,et al.  Ion exchange in glass using femtosecond laser irradiation , 2008 .

[50]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[51]  G. Marshall,et al.  Study of the influence of femtosecond laser polarisation on direct writing of waveguides. , 2006, Optics express.

[52]  Bin Zhu,et al.  Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser , 2007 .

[53]  Koji Sugioka,et al.  Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. , 2003, Optics letters.

[54]  Eric Mazur,et al.  Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates. , 2006, Optics express.

[55]  G. Seifert,et al.  Time-resolved investigation of laser-induced shape transformation of silver nanoparticles , 2009 .

[56]  Julien Lumeau,et al.  Nonlinear photosensitivity of photo-thermo-refractive glass by high intensity laser irradiation , 2008 .

[57]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[58]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[59]  Lionel Canioni,et al.  Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass. , 2008, Optics letters.

[60]  K. Nishio,et al.  Photosensitivity in phosphate glass doped with Ag+ upon exposure to near-ultraviolet femtosecond laser pulses , 2001 .

[61]  Jinhai Si,et al.  Manipulation of gold nanoparticles inside transparent materials. , 2004, Angewandte Chemie.

[62]  G. Seifert,et al.  Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles , 2009 .

[63]  G. Seifert,et al.  Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses , 2009 .

[64]  K Miura,et al.  Writing Waveguides and Gratings in Silica and Related Materials by Femto-Second Laser , 1998, Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals.

[65]  G. Seifert,et al.  Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study , 2004 .

[66]  J. Si,et al.  Optical properties of structurally modified glasses doped with gold ions. , 2004, Optics letters.

[67]  J. Haug,et al.  Laser-Induced, Polarization Dependent Shape Transformation of Au/Ag Nanoparticles in Glass , 2009, Nanoscale research letters.

[68]  Jonathan B. Ashcom,et al.  Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica , 2006 .

[69]  G Seifert,et al.  Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass. , 2003, Optics letters.

[70]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[71]  A. Gaeta,et al.  Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. , 1999, Optics letters.

[72]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[73]  Kazuyuki Hirao,et al.  Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser , 2005 .

[74]  M. Roeffaers,et al.  Characterization of fluorescence in heat-treated silver-exchanged zeolites. , 2009, Journal of the American Chemical Society.

[75]  Masaaki Sakakura,et al.  Application of femtosecond-laser induced nanostructures in optical memory. , 2007, Journal of nanoscience and nanotechnology.

[76]  M. Roeffaers,et al.  In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[77]  J. Si,et al.  Space-selective precipitation of metal nanoparticles inside glasses , 2002 .

[78]  James A. Piper,et al.  Ultrafast laser written active devices , 2009 .

[79]  P. Corkum,et al.  Memory in nonlinear ionization of transparent solids. , 2006, Physical review letters.

[80]  J. Qiu,et al.  Effect of cerium oxide on the precipitation of silver nanoparticles in femtosecond laser irradiated silicate glass , 2006 .

[81]  G. Seifert,et al.  Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation. , 2007, Optics letters.

[82]  Masaaki Sakakura,et al.  Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses , 2008 .

[83]  Martin Richardson,et al.  Beat the diffraction limit in 3D direct laser writing in photosensitive glass. , 2009, Optics express.

[84]  Tsuneo Mitsuyu,et al.  Memorized polarization-dependent light scattering in rare-earth-ion-doped glass , 2000 .

[85]  Masaaki Sakakura,et al.  Emission and excitation mechanism of radiophotoluminescence in Ag+-activated phosphate glass , 2010 .

[86]  G. Seifert,et al.  Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses , 2001 .

[87]  Perry,et al.  Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. , 1996, Physical review. B, Condensed matter.

[88]  L. Canioni,et al.  Planar waveguides formed by Ag+-Na+ ion exchange in nonlinear optical glasses: diffusion and optical properties. , 2000, Applied optics.

[89]  Masaaki Sakakura,et al.  Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses , 2010 .

[90]  G. Seifert,et al.  Ultrashort laser pulse induced deformation of silver nanoparticles in glass , 1999 .

[91]  Koji Sugioka,et al.  Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. , 2003, Optics express.

[92]  M. Roeffaers,et al.  Photoactivation of silver-exchanged zeolite A. , 2008, Angewandte Chemie.

[93]  Bernard Prade,et al.  Study of damage in fused silica induced by ultra-short IR laser pulses , 2001 .

[94]  P. Corkum,et al.  LETTER TO THE EDITOR: Ultrafast multiphoton forest fires and fractals in clusters and dielectrics , 2004 .

[95]  Jacobson,et al.  Determination of diffusion mechanisms in amorphous silicon. , 1992, Physical review. B, Condensed matter.