Optimum design of parallel kinematic toolheads with genetic algorithms

In this paper, the optimum design of parallel kinematic toolheads is implemented using genetic algorithms with the consideration of the global stiffness and workspace volume of the toolheads. First, a complete kinetostatic model is developed which includes three types of compliance, namely, actuator compliance, leg bending compliance and leg axial compliance. Second, based on this model, two kinetostatic performance indices are introduced to provide a new means of measuring compliance over the workspace. These two kinetostatic performance indices are the mean value and the standard deviation of the trace of the generalized compliance matrix. The mean value represents the average compliance of the Parallel Kinematic Machines over the workspace, while the standard deviation indicates the compliance fluctuation relative to the mean value. Third, design optimization is implemented for global stiffness and working volume based on kinetostatic performance indices. Additionally, some compliance comparisons between Tripod toolhead and other two principal Tripod-based Parallel Kinematic Machines are conducted.

[1]  Fengfeng Xi,et al.  Effect of Leg Inertia on Dynamics of Sliding-Leg Hexapods , 2001 .

[2]  Fengfeng Xi,et al.  Development of a sliding-leg tripod as an add-on device for manufacturing , 2001, Robotica.

[3]  Clément Gosselin,et al.  Kinetostatic Analysis and Design Optimization of the Tricept Machine Tool Family , 2002 .

[4]  Bashar El-Khasawneh,et al.  The Tetrahedral Tripod , 1999 .

[5]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[6]  Anna Kochan Parallel robots perfect propellors , 1996 .

[7]  Bhaskar Dasgupta,et al.  The Stewart platform manipulator: a review , 2000 .

[8]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[9]  Jian Wang,et al.  Workspace evaluation of Stewart platforms , 1994, Adv. Robotics.

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[12]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[13]  K. S. Smith,et al.  Parallel kinematic machines : theoretical aspects and industrial requirements , 1999 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Placid Mathew Ferreira,et al.  Computation of stiffness and stiffness bounds for parallel link manipulators 1 This research was sup , 1999 .

[16]  W. Thomson Theory of vibration with applications , 1965 .

[17]  Fengfeng Xi,et al.  A comparative study on tripod units for machine tools , 2003 .

[18]  Clément Gosselin,et al.  The Synthesis of Manipulators with Prescribed Workspace , 1991 .

[19]  Harold Clifford Martin,et al.  Introduction to Matrix Methods of Structural Analysis , 1966 .

[20]  Chu-Kia Wang Matrix methods of structural analysis , 1970 .

[21]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[22]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[23]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[24]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[25]  F. Tahmasebi,et al.  Kinematic Synthesis and Analysis of a Novel Class of Six-DOF Parallel Minimanipulators , 1993 .

[26]  Hans Kurt Tönshoff,et al.  Structure and Characteristics of the Hybrid Manipulator Georg V , 1999 .

[27]  John R. Koza,et al.  Evolving a Computer Program to Generate Random Numbers Using the Genetic Programming Paradigm , 1991, ICGA.