Modifying a Sparse Cholesky Factorization | SIAM Journal on Matrix Analysis and Applications | Vol. 20, No. 3 | Society for Industrial and Applied Mathematics

Given a sparse symmetric positive definite matrix AAT and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for obtaining the new factorization associated with either adding a column to A or deleting a column from A. Our techniques are based on an analysis and manipulation of the underlying graph structure and on ideas of Gill et al. [Math. Comp., 28 (1974), pp. 505–535] for modifying a dense Cholesky factorization. We show that our methods extend to the general case where an arbitrary sparse symmetric positive definite matrix is modified. Our methods are optimal in the sense that they take time proportional to the number of nonzero entries in L and D that change.

[1]  W. Hager Applied Numerical Linear Algebra , 1987 .

[2]  Stanley C. Eisenstat,et al.  Yale sparse matrix package I: The symmetric codes , 1982 .

[3]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[4]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[5]  J. M. Bennett Triangular factors of modified matrices , 1965 .

[6]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[7]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[8]  Kincho H. Law,et al.  Sparse matrix factor modification in structural reanalysis , 1985 .

[9]  P. Gill,et al.  Quasi-Newton Methods for Unconstrained Optimization , 1972 .

[10]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[11]  Graham H. Powell,et al.  Solution of progressively changing equilibrium equations for nonlinear structures , 1977 .

[12]  J. Gilbert Predicting Structure in Sparse Matrix Computations , 1994 .

[13]  Alan George,et al.  The Design of a User Interface for a Sparse Matrix Package , 1979, TOMS.

[14]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[15]  Christian H. Bischof,et al.  A Cholesky Up- and Downdating Algorithm for Systolic and SIMD Architectures , 1993, SIAM J. Sci. Comput..

[16]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[17]  Andrew Harry Sherman,et al.  On the efficient solution of sparse systems of linear and nonlinear equations. , 1975 .

[18]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[19]  J. Gilbert,et al.  Sparse Partial Pivoting in Time Proportional to Arithmetic Operations , 1986 .

[20]  Vladimir Brandwajn,et al.  Partial Matrix Refactorization , 1986, IEEE Transactions on Power Systems.

[21]  Alan George,et al.  An Optimal Algorithm for Symbolic Factorization of Symmetric Matrices , 1980, SIAM J. Comput..

[22]  P. Gill,et al.  Methods for computing and modifying the $LDV$ factors of a matrix , 1975 .

[23]  K. Law On updating the structure of sparse matrix factors , 1989 .

[24]  A. George,et al.  A data structure for sparse QR and LU factorizations , 1988 .

[25]  C. Pan A modification to the linpack downdating algorithm , 1990 .

[26]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[27]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[28]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[29]  E. Ng,et al.  An E cient Algorithm to Compute Row andColumn Counts for Sparse Cholesky Factorization , 1994 .

[30]  Jack J. Dongarra,et al.  Distribution of mathematical software via electronic mail , 1985, SGNM.