Chemical abundances of magnetic and non-magnetic Herbig Ae/Be stars

The photospheres of about 10–20 per cent of main-sequence A-and B-type stars exhibit a wide range of chemical peculiarities, often associated with the presence of a magnetic field. It is not exactly known at which stage of stellar evolution these chemical peculiarities develop. To investigate this issue, in this paper we study the photospheric compositions of a sample of Herbig Ae and Be stars, which are considered to be the pre-main-sequence progenitors of A and B stars. We have performed a detailed abundance analysis of 20 Herbig stars (three of which have confirmed magnetic fields), and one dusty young star. We have found that half the stars in our sample show λ Bootis (λ Boo) chemical peculiarities to varying degrees, only one star shows weak Ap/Bp peculiarities and all the remaining stars are chemically normal. The incidence of λ Boo chemical peculiarities we find in Herbig stars is much higher than what is seen on the main sequence. We argue that a selective accretion model for λ Boo star formation is a natural explanation for the remarkably large number of λ Boo stars in our sample. We also find that the magnetic Herbig stars do not exhibit a range of chemical compositions remarkably different from the normal stars: one magnetic star displays λ Boo chemical peculiarities (HD101412), one displays weak Ap/Bp peculiarities (V380 Ori A) and one (HD 190073) is chemically normal. This is completely different from what is seen on the main sequence, where all magnetic A and cool B stars show Ap/Bp chemical peculiarities, and this is consistent with the idea that the magnetic field precedes the formation of the chemical peculiarities typical of Ap and Bp stars.

[1]  M. Schoeller,et al.  Rotationally modulated variations and the mean longitudinal magnetic field of the Herbig Ae star HD 101412 , 2010, 1011.3132.

[2]  The status of Galactic field λ Bootis stars in the post‐Hipparcos era , 2002, astro-ph/0207488.

[3]  Keith C. Smith Chemically peculiar hot stars , 1996 .

[4]  J. Landstreet,et al.  A search for magnetic fields in Lambda Bootis stars. , 1990 .

[5]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[6]  G. Wade,et al.  Characterization of the magnetic field of the Herbig Be star HD 200775 , 2007, 0712.1746.

[7]  N. Morrell,et al.  The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars , 1995 .

[8]  W. Herbst,et al.  A Photometric Catalog of Herbig Ae/Be Stars and Discussion of the Nature and Cause of the Variations of UX Orionis Stars , 1999 .

[9]  B. Merín,et al.  Accretion rates and accretion tracers of Herbig Ae/Be stars , 2011, 1109.3288.

[10]  P. Charbonneau,et al.  Particle transport and the Lambda Bootis phenomenon. II - an accretion/diffusion model , 1993 .

[11]  G. Wade,et al.  Magnetism and binarity of the Herbig Ae star V380 Ori , 2009, 0907.5113.

[12]  L. Hartmann,et al.  Magnetospheres and Disk Accretion in Herbig Ae/Be Stars , 2004, astro-ph/0409008.

[13]  P. Garcı́a-Lario,et al.  The pre-main-sequence star IP Persei , 2001 .

[14]  G. Wade,et al.  The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster ? , 2008, 0803.3540.

[15]  P. Berlind,et al.  Spectral Analysis and Classification of Herbig Ae/Be Stars , 2004 .

[16]  E. Paunzen A spectroscopic survey for lambda Bootis stars. III. Final results , 2001 .

[17]  Kim A. Venn,et al.  The chemical composition of three Lambda Bootis stars , 1990 .

[18]  B. Carter,et al.  Magnetic fields and differential rotation on the pre-main sequence - I. The early-G star HD 141943 - brightness and magnetic topologies , 2011, 1101.5859.

[19]  A. Ariste,et al.  Dynamo processes and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099 , 2003 .

[20]  W. Corradi,et al.  Investigation of 131 Herbig Ae/Be Candidate Stars , 2003 .

[21]  G. Wade,et al.  The chemical abundance analysis of normal early A- and late B-type stars , 2009, 0906.5269.

[22]  Weak magnetic fields in Ap/Bp stars - Evidence for a dipole field lower limit and a tentative interp , 2007, 0710.1554.

[23]  L. Testi,et al.  Accretion Rates in Herbig Ae stars , 2006 .

[24]  G. Wade,et al.  Discovery of magnetic fields in the very young, massive stars W601 (NGC 6611) and OI 201 (NGC 2244) ⋆ , 2008, 0802.4078.

[25]  M. Schoeller,et al.  Magnetic fields in Herbig Ae stars , 2004, Proceedings of the International Astronomical Union.

[26]  R. Mathieu,et al.  The Spatial Distribution of the λ Orionis Pre-Main-Sequence Population , 2001 .

[27]  G. Michaud,et al.  Mass Loss in A and F Stars: The lambda Bootis Stars , 1986 .

[28]  S. Brittain,et al.  MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS , 2011 .

[29]  V. Ripepi,et al.  A multisite photometric campaign on the pre-main-sequence delta Scuti pulsator IP Persei , 2005, astro-ph/0512289.

[30]  I. Redondo,et al.  A photometric catalogue of southern emission-line stars ?;?? , 2001, astro-ph/0110495.

[31]  E. Paunzen,et al.  Towards the solution of the λ Bootis problem , 2000 .

[32]  G. Wade,et al.  The magnetic field of the pre-main sequence Herbig Ae star HD 190073 , 2006, astro-ph/0610499.

[33]  G. Michaud,et al.  Diffusion Processes in Peculiar a Stars , 1970 .

[34]  L. Balona Effective temperature bolometric correction and mass calibration for O–F stars , 1994 .

[35]  Andrew Collier Cameron,et al.  Spectropolarimetric observations of active stars , 1997 .

[36]  R. Faraggiana,et al.  C, N, O in λ Boo stars and in composite spectra , 2005, astro-ph/0504102.

[37]  G. Wade,et al.  A search for strong, ordered magnetic fields in Herbig Ae/Be stars★ , 2007, astro-ph/0701387.

[38]  J. Landstreet The Magnetic Field and Abundance Distribution Geometry of the Peculiar A Star 53 Camelopardalis , 1988 .

[39]  G. Wade,et al.  Magnetic fields and chemical peculiarities of the very young intermediate-mass binary system HD 72106 , 2008, 0809.2039.

[40]  P. Morel CESAM: A code for stellar evolution calculations , 1997 .

[41]  G. Carraro,et al.  A spectroscopic study of the open cluster NGC 6475 (M 7) - Chemical abundances from stars in the range Teff = 4500–10 000 K , 2009, 0906.4330.

[42]  L. Fossati,et al.  Magnetic field measurements and their uncertainties: the FORS1 legacy , 2011, 1112.3969.

[43]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[44]  Inga Kamp,et al.  The λ Bootis phenomenon: interaction between a star and a diffuse interstellar cloud , 2002 .

[45]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[46]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[47]  G. Wade,et al.  A detailed spectroscopic analysis of the open cluster NGC 5460 , 2010, 1012.3050.

[48]  C. Cowley,et al.  Abundances in the Herbig Ae star HD 101412 - Abundance anomalies; λ Boo–Vega characteristics? , 2010, 1008.1601.

[49]  G. Wade,et al.  LTE spectrum synthesis in magnetic stellar atmospheres - The interagreement of three independent polarised radiative transfer codes , 2001 .

[50]  M. Barlow,et al.  Optical, infrared and millimetre-wave properties of Vega-like systems - II. Radiative transfer modelling , 1996 .

[51]  F. Palla,et al.  The pre-main-sequence evolution of intermediate-mass stars , 1993 .

[52]  U. Heiter The abundance pattern of $\lambda$ Bootis stars , 2001, astro-ph/0112196.

[53]  J. Richer,et al.  Abundance anomalies in pre-main-sequence stars: Stellar evolution models with mass loss , 2010, 1011.1907.

[54]  U. Heiter,et al.  The elemental abundance pattern of twenty lambda Bootis candidate stars , 2002 .

[55]  R. Behrend,et al.  Formation of massive stars by growing accretion rate , 2001, astro-ph/0105054.

[56]  W. Corradi,et al.  Stellar parameters and evidence of circumstellar activity for a sample of Herbig Ae/Be stars , 2006 .

[57]  G. Wade,et al.  Discovery of a huge magnetic field in the very young star NGC 2244-334 in the Rosette Nebula cluster , 2004 .

[58]  P. Charbonneau Particle Transport and the lambda Bootis Phenomenon. I. The Diffusion/Mass-Loss Model Revisited , 1993 .

[59]  Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars , 2005, astro-ph/0509295.

[60]  M. Schoeller,et al.  Accurate magnetic field measurements of Vega-like stars and Herbig Ae/Be stars ⋆ , 2005, astro-ph/0510157.

[61]  M. Asplund,et al.  The New Solar Chemical Composition , 2005 .