RATIONALIZATION OF THE DIELECTRIC PROPERTIES OF COMMON THREE-SITE WATER MODELS IN TERMS OF THEIR FORCE FIELD PARAMETERS

The dielectric properties (static dielectric constant e0, Debye relaxation time τD and distance dependent Kirkwood G-factor Gk(R)) of commonly used three-site water models (the “simple point charge” models SPC and SPC/E, as well as the “transferable intermolecular potentials with three point charges” TIP3P and its CHARMM modified variant TIP3Pmod) were evaluated from 2 ns molecular dynamics simulations using the Ewald summation method to compute the electrostatic interactions. The results for SPC (e0=65±5, τD=7.6±0.8 ps) and SPC/E (e0=68±6, τD=12.1±1.3 ps) are in good agreement with the literature; for TIP3P (TIP3Pmod) we obtained a dielectric constant e0=97±7 (97±6) and a Debye relaxation time τD=7.3±0.7 ps (6.9±0.6 ps). The surprisingly large differences in e0 were rationalized by an investigation of the relationship between the force field parameters and the dielectric properties. Based on simulations of hybrid SPC/TIP3P models, the HOH bond angle was identified as the determining factor of the dielect...

[1]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[2]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[3]  S. Yip,et al.  Molecular dynamics simulation of dielectric properties of water , 1987 .

[4]  Alan E. Mark,et al.  Computer simulation of protein motion , 1995 .

[5]  D. J. Adams,et al.  Taming the Edwald sum in the computer simulation of charged systems , 1987 .

[6]  O. Steinhauser,et al.  On the calculation of the dielectric constant using the Ewald-Kornfeld tensor , 1983 .

[7]  M. Berkowitz,et al.  The dielectric constant of SPC/E water , 1989 .

[8]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[9]  P. Kollman,et al.  Molecular dynamics free energy simulations: Influence of the truncation of long‐range nonbonded electrostatic interactions on free energy calculations of polar molecules , 1994 .

[10]  Frank H. Stillinger,et al.  Revised central force potentials for water , 1978 .

[11]  A T Brünger,et al.  Microscopic theory of the dielectric properties of proteins. , 1991, Biophysical journal.

[12]  Alan E. Mark,et al.  Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations , 1993 .

[13]  J. Kirkwood The Dielectric Polarization of Polar Liquids , 1939 .

[14]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[15]  Stefan Boresch,et al.  Presumed versus real artifacts of the Ewald summation technique: The importance of dielectric boundary conditions , 1997 .

[16]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[17]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[18]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[19]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[20]  D. Pérahia,et al.  Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[22]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[23]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[24]  A. D. Buckingham Angular correlation in liquids , 1967 .

[25]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[26]  R. C. Weast Handbook of chemistry and physics , 1973 .

[27]  Arieh Warshel,et al.  Microscopic simulations of macroscopic dielectric constants of solvated proteins , 1991 .

[28]  P. Kollman,et al.  Advancing beyond the atom‐centered model in additive and nonadditive molecular mechanics , 1997 .

[29]  R. Cole,et al.  Dielectric Properties of Ice and Solid D2O , 1952 .

[30]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[31]  J. Hermans,et al.  The Dielectric Properties of Simulated Water Droplets , 1996 .

[32]  Richard N. Zare,et al.  Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics , 1988 .

[33]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[34]  A. Kuznetsov,et al.  Electrostatics of proteins: Description in terms of two dielectric constants simultaneously , 1997, Proteins.

[35]  Thomas Simonson,et al.  Accurate calculation of the dielectric constant of water from simulations of a microscopic droplet in vacuum , 1996 .

[36]  D. Davidson,et al.  Dielectric Properties of Ice VII. Ice VIII: A New Phase of Ice , 1966 .

[37]  Thomas Simonson,et al.  Microscopic Dielectric Properties of Cytochrome c from Molecular Dynamics Simulations in Aqueous Solution , 1995 .

[38]  K. Heinzinger,et al.  An improved potential for non-rigid water molecules in the liquid phase , 1983 .

[39]  Anders Wallqvist,et al.  Effective potentials for liquid water using polarizable and nonpolarizable models , 1993 .

[40]  O. Steinhauser,et al.  Invariant expansion coefficients of the molecular pair correlation function of ZX4‐systems , 1981 .

[41]  O. Steinhauser,et al.  Calculation of the dielectric properties of a protein and its solvent: theory and a case study. , 1997, Journal of molecular biology.

[42]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[43]  D. Chandler,et al.  Calculation of orientational pair correlation factors with the interaction site formalism , 1984 .

[44]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[45]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[46]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[47]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[48]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[49]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[50]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[51]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[52]  O. Steinhauser,et al.  On the calculation of the frequency-dependent dielectric constant in computer simulations , 1983 .

[53]  Michiel Sprik,et al.  Hydrogen bonding and the static dielectric constant in liquid water , 1991 .

[54]  Ronald M. Levy,et al.  Molecular dynamics simulations of water with Ewald summation for the long range electrostatic interactions , 1991 .

[55]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[56]  O. Steinhauser On the Orientational Structure and Dielectric Properties of Water. A Comparison of ST2 and MCY Potential , 1983 .

[57]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[58]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[59]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[60]  J. W. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  Wilfred F. van Gunsteren,et al.  Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K , 1994 .

[62]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[63]  D. Davidson,et al.  Dielectric Properties of Ices II, III, V, and VI , 1965 .

[64]  A. J. Stam,et al.  Estimation of statistical errors in molecular simulation calculations , 1986 .

[65]  Frank H. Stillinger,et al.  Molecular Dynamics Study of Temperature Effects on Water Structure and Kinetics , 1972 .