Structural multi-modal damping by optimizing shunted piezoelectric transducers

The capacity of different auto-supplied devices using shunted piezoelectric circuits are studied here to improve structural damping by avoiding implementation of complex and heavy control devices. The presented technique uses a dedicated numerical piezo-mechanical model combining both mechanical and electrical coupling parameters. An original methodology are also introduced for optimizing the parameters of electrical shunt circuits connected to piezoelectric elements and also structural locations of these integrated transducers. The results, experimentally validated (on beams and a plate), demonstrate that vibrations can be significantly reduced when shunted piezoelectric devices are mounted on a real structure. Finally, the proposed methodology is used for optimizing shape and location of the shunted piezoelectric patches to damp several modes of a plate.

[1]  S. O. Reza Moheimani,et al.  New method for multiple-mode shunt damping of structural vibration using a single piezoelectric transducer , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[2]  Craig A. Rogers,et al.  Application of Commercial Finite Element Codes for the Analysis of Induced Strain-Actuated Structures , 1994 .

[3]  Andrew J. Fleming,et al.  Institute of Physics Publishing Smart Materials and Structures Reducing the Inductance Requirements of Piezoelectric Shunt Damping Systems , 2003 .

[4]  Gregory S. Agnes Piezoelectric coupling of bladed-disk assemblies , 1999, Smart Structures.

[5]  K. H. Ha,et al.  Finite element analysis of sandwich plates: An overview , 1990 .

[6]  Daniel L. Palumbo,et al.  A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches , 2004 .

[7]  Y. Kikushima,et al.  Optimal Vibration Feedback Control of an Euler-Bernoulli Beam: Toward Realization of the Active Sink Method , 1999 .

[8]  Ahmed K. Noor,et al.  Bibliography of Books and Monographs on Finite Element Technology , 1991 .

[9]  Miguel Luiz Bucalem,et al.  Analysis of smart laminates using piezoelectric MITC plate and shell elements , 2005 .

[10]  Andrew J. Fleming,et al.  Synthetic impedance for implementation of piezoelectric shunt-damping circuits , 2000 .

[11]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[12]  Gregory S. Agnes,et al.  Active/passive piezoelectric vibration suppression , 1994, Smart Structures.

[13]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[14]  Manuel Collet,et al.  Active damping of a micro-cantilever piezo-composite beam , 2003 .

[15]  Andrew S. Bicos,et al.  Structural vibration damping experiments using improved piezoelectric shunts , 1997, Smart Structures.

[16]  A. Hać,et al.  Sensor And Actuator Location In Motion Control Of Flexible Structures , 1993 .

[17]  Vijay K. Varadan,et al.  Closed-loop finite element modeling of active/passive damping in structural vibration control , 1997, Smart Structures.

[18]  Philip A. Nelson,et al.  Active Control of Sound , 1992 .

[19]  A. Benjeddou,et al.  A benchmark for free vibration and effective coupling of thick piezoelectric smart structures , 2008 .

[20]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[21]  Francis C. Moon,et al.  Laminated piezopolymer plates for torsion and bending sensors and actuators , 1989 .

[22]  S. Y. Wang,et al.  A finite element model for the static and dynamic analysis of a piezoelectric bimorph , 2004 .

[23]  Lothar Gaul,et al.  Finite element-based analysis of shunted piezoelectric structures for vibration damping , 2006 .

[24]  Andrew J. Fleming,et al.  Improved Current and Charge Amplifiers for Driving Piezoelectric Loads, and Issues in Signal Processing Design for Synthesis of Shunt Damping Circuits , 2004 .

[25]  Manuel Collet,et al.  Definition of mechanical design parameters to optimize efficiency of integral force feedback , 2005 .

[26]  S. Fleeter,,et al.  Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations , 2002 .

[27]  Kenneth A. Cunefare Negative capacitance shunts for vibration control and suppression of reactive input power on rectangular panels , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  William W. Clark,et al.  Comparison of low-frequency piezoelectric switching shunt techniques for structural damping , 2002 .

[29]  K. Ragsdell,et al.  Structural optimization using a fuzzy goal programming approach , 1990 .

[30]  Amr M. Baz,et al.  Vibration Control of Beams with Negative Capacitive Shunting of Interdigital Electrode Piezoceramics , 2005 .

[31]  Razvan Rusovici,et al.  Design of a Single-Crystal Piezoceramic Vibration Absorber , 2002 .

[32]  M. Collet Shape optimization of piezoelectric sensors dealing with spill-over instability , 2001, IEEE Trans. Control. Syst. Technol..

[33]  下田 郁夫,et al.  Vibration Control Structures , 2000 .

[34]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[35]  Massimo Ruzzene,et al.  Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches , 2001 .

[36]  Jaroslav Mackerle,et al.  Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992‐1995) , 1997 .

[37]  Kenneth A. Cunefare,et al.  Modal Synthesis and Dynamical Condensation Methods for Accurate Piezoelectric Systems Impedance Computation , 2008 .

[38]  K. Kimura,et al.  Sound isolation by piezoelectric polymer films connected to negative capacitance circuits , 2002, IEEE Transactions on Dielectrics and Electrical Insulation.

[39]  Massimo Ruzzene,et al.  Broadband Vibration Suppression Assessment of Negative Impedance Shunts , 2008 .

[40]  Dale A. Hopkins,et al.  Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates , 1997 .

[41]  Maurizio Porfiri,et al.  Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation , 2004 .

[42]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal , 2004 .

[43]  Francesco dell’Isola,et al.  On models of layered piezoelectric beams for passive vibration control , 2004 .

[44]  Amâncio Fernandes,et al.  Analytical and Numerical Modelling of Laminated Composites with Piezoelectric Elements , 2004 .

[45]  Mohamed Ichchou,et al.  Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures , 2009 .

[46]  Horn-Sen Tzou,et al.  A Study of Segmentation of Distributed Piezoelectric Sensors and Actuators, Part II: Parametric Study and Active Vibration Controls , 1994 .

[47]  Edward F. Crawley,et al.  Intelligent structures for aerospace - A technology overview and assessment , 1994 .

[48]  Singiresu S. Rao,et al.  Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey , 1994 .

[49]  Nobuo Tanaka,et al.  Cluster power flow control of a distributed-parameter planar structure for generating a vibration-free zone , 2007 .

[50]  Sunil Saigal,et al.  Advances of thin shell finite elements and some applications—version I , 1990 .

[51]  P. Laura,et al.  Comments on “Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships” [J. Acoust. Soc. Am. 87, 1144–1158 (1990)] , 1991 .

[52]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[53]  Horn-Sen Tzou,et al.  A Study of Segmentation of Distributed Piezoelectric Sensors and Actuators, Part I: Theoretical Analysis , 1994 .

[54]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells: Part II: Approximation by finite element methods and numerical experiments , 2003 .

[55]  C. K. Lee Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships , 1990 .

[56]  Massimo Ruzzene,et al.  Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[57]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[58]  Andrew J. Fleming,et al.  Highly resonant controller for multimode piezoelectric shunt damping , 2001 .