Dynamic Fluid-Structure Interaction Analysis Using Boundary Finite Element Method–Finite Element Method

In this paper, the boundary finite element method (BFEM) is applied to dynamic fluid-structure interaction problems. The BFEM is employed to model the infinite fluid medium, while the structure is modeled by the finite element method (FEM). The relationship between the fluid pressure and the fluid velocity corresponding to the scattered wave is derived from the acoustic modeling. The BFEM is suitable for both finite and infinite domains, and it has advantages over other numerical methods. The resulting system of equations is symmetric and has no singularity problems. Two numerical examples are presented to validate the accuracy and efficiency of BFEM-FEM coupling for fluid-structure interaction problems.

[1]  O. Estorff,et al.  On FEM-BEM coupling for fluid-structure interaction analyses in the time domain , 1991 .

[2]  K. Bathe,et al.  Analysis of fluid-structure interactions. a direct symmetric coupled formulation based on the fluid velocity potential , 1985 .

[3]  T. L. Geers Excitation of an Elastic Cylindrical Shell by a Transient Acoustic Wave , 1969 .

[4]  O. von Estorff,et al.  Fluid-structure interaction by coupling BEM and nonlinear FEM , 2002 .

[5]  J. Wolf,et al.  Consistent Infinitesimal Finite-Element Cell Method: Three-Dimensional Vector Wave Equation , 1996 .

[6]  I. S. Sandler,et al.  Uncoupling Approximations in Fluid-Structure Interaction Problems With Cavitation , 1981 .

[7]  G. Dasgupta A Finite Element Formulation for Unbounded Homogeneous Continua , 1982 .

[8]  S. Zilliacus FLUID-STRUCTURE INTERACTION AND ADINA , 1983 .

[9]  Ted Belytschko,et al.  Fluid-structure interaction , 1980 .

[10]  K. Bathe,et al.  An arbitrary lagrangian-eulerian velocity potential formulation for fluid-structure interaction , 1993 .

[11]  R. Rodríguez,et al.  Efficient solution of fluid-structure vibration problems , 2001 .

[12]  D. Givoli Non-reflecting boundary conditions , 1991 .

[13]  Seng Tjhen Lie,et al.  STABLE BOUNDARY ELEMENT METHOD/FINITE ELEMENT METHOD PROCEDURE FOR DYNAMIC FLUID--STRUCTURE INTERACTIONS , 2002 .

[14]  K. C. Biswal,et al.  FREE-VIBRATION ANALYSIS OF LIQUID-FILLED TANK WITH BAFFLES , 2003 .

[15]  R. Ohayon,et al.  Substructure variational analysis of the vibrations of coupled fluid–structure systems. Finite element results , 1979 .

[16]  John P. Wolf,et al.  Consistent Infinitesimal Finite Element Cell Method: Three-Dimensional Scalar Wave Equation , 1996 .

[18]  P. K. Sinha,et al.  Non-linear coupled slosh dynamics of liquid-filled laminated composite containers: a two dimensional finite element approach , 2003 .

[19]  P. J. Dowling,et al.  Far-field fluid-structure interaction—Formulation and validation , 1995 .

[20]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[21]  H. Huang,et al.  An Exact Analysis of the Transient Interaction of Acoustic Plane Waves With a Cylindrical Elastic Shell , 1970 .

[22]  Raymond D. Mindlin,et al.  Response of an Elastic Cylindrical Shell to a Transverse, Step Shock Wave , 1989 .

[23]  F. H. Hamdan Near-field fluid–structure interaction using Lagrangian fluid finite elements , 1999 .

[24]  The θ scheme for time‐domain BEM/FEM coupling applied to the 2‐D scalar wave equation , 2000 .

[25]  Seng Tjhen Lie,et al.  Spline shell element and plane-wave approximation for dynamic response of submerged structures , 2001 .

[26]  K. Bathe,et al.  A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .

[27]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .