High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)

With the introduction of a Kelvin probe mode to atomic force microscopy, the so called scanning Kelvin probe force microscopy (SKPFM), the Kelvin probe technique finds application in a steadily increasing number of different fields, from corrosion science to microelectronics and biosciences. For many of these applications, high resolution is required as the relevant information lies in the sub-microscopic distribution of work functions or potentials, which explains the increasing interest in SKPFM. However, compared to the standard scanning Kelvin probe (SKP) technique SKPFM is prone to much more artefacts, which are often not taken into account in the interpretation of the results, as is also the case with the real physical nature of the measured data. A critical discussion of possible artefacts and on the interpretation of the data is presented in this paper, with the main focus on application in corrosion science.

[1]  M. Zheludkevich,et al.  Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy , 2005 .

[2]  M. Lohrengel,et al.  Nucleation and growth of anodic oxide films , 1983 .

[3]  M. Stratmann,et al.  The delamination of polymeric coatings from steel Part 3: Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface , 1998 .

[4]  G. Frankel,et al.  Corrosion Study of AA2024‐T3 by Scanning Kelvin Probe Force Microscopy and In Situ Atomic Force Microscopy Scratching , 1998 .

[5]  G. Frankel,et al.  A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy , 2002 .

[6]  S. Trasatti Structure of the metal/electrolyte solution interface: new data for theory , 1991 .

[7]  Geraint Williams,et al.  Probe diameter and probe-specimen distance dependence in the lateral resolution of a scanning Kelvin probe , 2002 .

[8]  S. Trasatti The concept and physical meaning of absolute electrode potential: A Reassessment , 1982 .

[9]  Martin Stratmann,et al.  The Delamination of Polymeric Coatings from Steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism , 1998 .

[10]  A. Stemmer,et al.  Investigation of the cleaved surface of a p–i–n laser using Kelvin probe force microscopy and two-dimensional physical simulations , 2000 .

[11]  A. Stemmer,et al.  Resolution and contrast in Kelvin probe force microscopy , 1998 .

[12]  G. Frankel,et al.  Characterization of Corrosion Interfaces by the Scanning Kelvin Probe Force Microscopy Technique , 2001 .

[13]  M. Stratmann,et al.  Surface Modification by Ordered Monolayers: New Ways of Protecting Materials Against Corrosion , 1999 .

[14]  J. Mårdalen,et al.  Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy , 2005 .

[15]  S. Trasatti Surface science and electrochemistry: concepts and problems , 1995 .

[16]  A. Broniatowski,et al.  A high-resolution scanning Kelvin probe microscope for contact potential measurements on the 100 nm scale , 1997 .

[17]  Y. Sugawara,et al.  The elimination of the ‘artifact’ in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope , 2002 .

[18]  E. Gileadi,et al.  The components of electrode potential , 1972 .

[19]  M. Schütze Corrosion and environmental degradation , 2000 .

[20]  J. Svensson,et al.  Scanning Kelvin Probe Force Microscopy A Useful Tool for Studying Atmospheric Corrosion of MgAl Alloys In Situ , 2003 .

[21]  J. Wit,et al.  Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique , 2000 .

[22]  Martin Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique , 1990 .

[23]  M. Lohrengel,et al.  Electrochemical characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell , 2003 .

[24]  S. Trasatti Reply to “Remark on the paper of S. Trasatti: The concept of absolute electrode potential. An attempt at a calculation”, by A. Frumkin and B. Damaskin , 1975 .

[25]  O. Wolter,et al.  Scanning force microscopy with micromachined silicon sensors , 1991 .

[26]  M. Stratmann,et al.  The delamination of polymeric coatings from steel. Part 2: First stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface , 1998 .

[27]  G. Frankel,et al.  Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy , 1998 .

[28]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[29]  J. Slinkman,et al.  Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes , 1996 .

[30]  J. Bockris The interphasial components of conventional electrode potentials , 1970 .

[31]  D. Rath,et al.  Continuous work function monitoring for electrode emersion , 1981 .

[32]  S. Trasatti The “absolute” electrode potential—the end of the story , 1990 .

[33]  S. Trasatti,et al.  The solubility of metals in liquid polar phases , 1977 .

[34]  F. Prinz,et al.  Geometric artefact suppressed surface potential measurements , 2006 .

[35]  G. Frankel,et al.  Influence of Dichromate Ions on Corrosion of Pure Aluminum and AA2024‐T3 in NaCl Solution Studied by AFM Scratching , 1999 .

[36]  A. Jäger-Waldau,et al.  Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces , 2000 .

[37]  R. Hausbrand,et al.  Delamination Resistant Zinc Alloys: Simple Concept and Results on the System Zinc‐Magnesium , 2003 .

[38]  J. Bockris Comment on the note by Gileadi and Stoner , 1972 .

[39]  H. Terryn,et al.  Corrosion behaviour of different tempers of AA7075 aluminium alloy , 2004 .

[40]  M. Lohrengel,et al.  Stability, reactivity and breakdown of passive films. Problems of recent and future research , 2000 .

[41]  S. Trasatti,et al.  The concept of absolute electrode potential an attempt at a calculation , 1974 .

[42]  A. W. Hassel,et al.  Passivity of Metals, Alloys, and Semiconductors , 2003 .

[43]  M. Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers. II, Experimental results , 1990 .

[44]  T. G. Woodcock,et al.  Corrosion behaviour of a Ti-base nanostructure-dendrite composite , 2005 .

[45]  J. Pan,et al.  Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy for Characterization of Duplex Stainless Steels , 2003 .

[46]  Brian W. Johnson,et al.  The absolute electrode potential of metal electrodes emersed from liquid electrolytes , 1992 .

[47]  H. Terryn,et al.  Characterization of chromate conversion coatings on zinc using XPS and SKPFM , 2005 .

[48]  A. Broniatowski,et al.  Design and implementation of a Kelvin microprobe for contact potential measurements at the submicron scale , 1994 .

[49]  J. Wit Local potential measurements with the SKPFM on aluminium alloys , 2004 .

[50]  M. Stratmann,et al.  Microscopic aspects of electrochemical delamination: an SKPFM study , 2003 .

[51]  Andrej Atrens,et al.  Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution , 2005 .

[52]  Albert K. Henning,et al.  Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .

[53]  J. Bockris,et al.  Work Function of Metals and the Potential at Which They Have Zero Charge in Contact with Solutions , 1968 .

[54]  A. Stemmer,et al.  Practical aspects of Kelvin probe force microscopy , 1999 .