Modeling of the cutting front profile in abrasive water jet machining based on the energy balance approach

[1]  M. Papini,et al.  Controlled depth micro-abrasive waterjet milling of aluminum oxide to fabricate micro-molds containing intersecting free-standing structures , 2022, Precision Engineering.

[2]  N. Babu,et al.  Modelling of abrasive waterjet kerf in a double-layered structure , 2021 .

[3]  C. Tang,et al.  Exploring cutting front profile in abrasive water jet machining of aluminum alloys , 2020, The International Journal of Advanced Manufacturing Technology.

[4]  Y. Ke,et al.  Numerical research on kerf characteristics of abrasive waterjet machining based on the SPH-DEM-FEM approach , 2020, The International Journal of Advanced Manufacturing Technology.

[5]  Ming Chen,et al.  Exploring a new method to obtain the 3D abrasive water jet profile , 2020 .

[6]  Anand J. Kulkarni,et al.  Multi-cohort intelligence algorithm for solving advanced manufacturing process problems , 2020, Neural Computing and Applications.

[7]  Ming Chen,et al.  Exploring the effectiveness of a self-defined virtual cutting method with a “soft knife” , 2020, The International Journal of Advanced Manufacturing Technology.

[8]  M. Ramulu,et al.  Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks , 2019, Composites Part B: Engineering.

[9]  V. Pucovsky,et al.  Evolutionary optimization of jet lag in the abrasive water jet machining , 2019, The International Journal of Advanced Manufacturing Technology.

[10]  R. Pahuja,et al.  Abrasive water jet machining of Titanium (Ti6Al4V)–CFRP stacks – A semi-analytical modeling approach in the prediction of kerf geometry , 2019, Journal of Manufacturing Processes.

[11]  Libor M. Hlaváč,et al.  Shape distortion reduction method for abrasive water jet (AWJ) cutting , 2018, Precision Engineering.

[12]  Jan K. Spelt,et al.  Abrasive jet turning of glass and PMMA rods and the micro-machining of helical channels , 2018 .

[13]  Libor M. Hlaváč,et al.  Precision comparison of analytical and statistical-regression models for AWJ cutting , 2017 .

[14]  Jamal Naser,et al.  Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study , 2016 .

[15]  George P. Petropoulos,et al.  Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels , 2012 .

[16]  Ján Kmec,et al.  Experimental method for the investigation of the abrasive water jet cutting quality , 2009 .

[17]  Dewan Hasan Ahmed,et al.  Modelling of the abrasive water jet cutting process , 2004 .

[18]  N. Ramesh Babu,et al.  Modelling and analysis of abrasive water jet cut surface topography , 2002 .

[19]  E. Siores,et al.  The effect of cutting jet variation on striation formation in abrasive water jet cutting , 2001 .

[20]  A. Momber,et al.  An energy balance of high-speed abrasive water jet erosion , 1999 .

[21]  M. Hashish,et al.  A Model for Abrasive-Waterjet (AWJ) Machining , 1989 .

[22]  P. Murugesan,et al.  Abrasive Water Jet Machining process: A state of art of review , 2020 .

[23]  M. Ramulu,et al.  Machinability of Randomly Chopped Discontinuous Fiber Composites : A Comparative Assessment of Conventional and Abrasive Waterjet , 2016 .

[24]  A. Henning,et al.  KERF CHARACTERIZATION IN ABRASIVE WATERJET CUTTING , 2009 .

[25]  Mohamed A. Elbestawi,et al.  Modelling of Abrasive Waterjet Machining: A New Approach , 2005 .