CIPRNG: A VLSI Family of Chaotic Iterations Post-Processings for $\mathbb {F}_{2}$ -Linear Pseudorandom Number Generation Based on Zynq MPSoC

Hardware pseudorandom number generators are continuously improved to satisfy both physical and ubiquitous computing security system challenges. The main contribution of this paper is to propose two post-processing modules in hardware, to improve the randomness of linear PRNGs while succeeding in passing the TestU01 statistical battery of tests. They are based on chaotic iterations and are denoted by CIPRNG-MC and CIPRNG-XOR. They have various interesting properties, encompassing the ability to improve the statistical profile of the generators on which they iterate. Such post-processing have been implemented on FPGA and ASIC without inferring any blocs (RAM or DSP). A comparison in terms of area, throughput, and statistical tests, is performed. The hardware pseudorandom number generation can reach a throughput/latency ratio equal to 8.5 Gbps for Zynq-FPGA and 10.9 Gbps for ASIC, being thus the fastest FPGA generators based on chaos that can pass TestU01. In particular, it is established that CIPRNG-XOR is 2.5 times faster and 5 times more efficient that almost all linear PRNGs who pass TestU01.

[1]  Ahmed S. Elwakil,et al.  Chaotic oscillator configuration using a frequency dependent negative resistor , 2000 .

[2]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[3]  O. Rössler An equation for continuous chaos , 1976 .

[4]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[5]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[6]  T. Geisel,et al.  Statistical properties of chaos in Chebyshev maps , 1984 .

[7]  Lih-Yuan Deng,et al.  Period Extension and Randomness Enhancement Using High-Throughput Reseeding-Mixing PRNG , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Wayne Luk,et al.  The LUT-SR Family of Uniform Random Number Generators for FPGA Architectures , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Michael Peter Kennedy,et al.  Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .

[10]  Riccardo Rovatti,et al.  Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Timothy A. Hall,et al.  The Importance of Entropy to Information Security , 2014, Computer.

[12]  Jacques M. Bahi,et al.  FPGA Design for Pseudorandom Number Generator Based on Chaotic Iteration used in Information Hiding Application , 2013, ArXiv.

[13]  Ahmed S. Elwakil,et al.  Chaotic oscillator configuration using a frequency dependent negative resistor , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[14]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[15]  Sebastiano Vigna,et al.  An Experimental Exploration of Marsaglia's xorshift Generators, Scrambled , 2014, ACM Trans. Math. Softw..

[16]  J. Cernák Digital generators of chaos , 1996 .

[17]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[18]  Jacques M. Bahi,et al.  Noise and Chaos Contributions in Fast Random Bit Sequence Generated From Broadband Optoelectronic Entropy Sources , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[20]  Jacques M. Bahi,et al.  Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Yicong Zhou,et al.  Discrete Wheel-Switching Chaotic System and Applications , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  In-Cheol Park,et al.  Area-Efficient Approach for Generating Quantized Gaussian Noise , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Jacques M. Bahi,et al.  Efficient and cryptographically secure generation of chaotic pseudorandom numbers on GPU , 2015, The Journal of Supercomputing.

[24]  C. Thibeault,et al.  FPGA implementation and evaluation of discrete-time chaotic generators circuits , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[25]  Mohammed Affan Zidan,et al.  Random number generation based on digital differential chaos , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[26]  Carsten Knudsen,et al.  Chaos Without Nonperiodicity , 1994 .

[27]  P. Dabal,et al.  FPGA implementation of chaotic pseudo-random bit generators , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[28]  Pierre L'Ecuyer,et al.  Tables of maximally equidistributed combined LFSR generators , 1999, Math. Comput..

[29]  Tsin-Yuan Chang,et al.  A chaos-based pseudo random number generator using timing-based reseeding method , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[30]  Jason Cong,et al.  High-Level Synthesis for FPGAs: From Prototyping to Deployment , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[31]  Piotr Zbigniew Wieczorek,et al.  Dual-Metastability Time-Competitive True Random Number Generator , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Pawel Dabal,et al.  A chaos-based pseudo-random bit generator implemented in FPGA device , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[33]  Mohammed Affan Zidan,et al.  The effect of numerical techniques on differential equation based chaotic generators , 2011, ICM 2011 Proceeding.

[34]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[35]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[36]  George Marsaglia,et al.  Random Number Generators , 2003 .

[37]  Ljupco Kocarev,et al.  Discrete Chaos − Part I: Theory , 2006 .

[38]  Christophe Guyeux,et al.  FPGA Implementation of F2-Linear Pseudorandom Number Generators based on Zynq MPSoC: A Chaotic Iterations Post Processing Case Study , 2016, SECRYPT.

[39]  Ray C. C. Cheung,et al.  A Bias-Bounded Digital True Random Number Generator Architecture , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Ljupco Kocarev,et al.  Pseudo-Chaotic Lossy Compressors for True Random Number Generation , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  Apostol Vassilev,et al.  Entropy as a Service: Unlocking Cryptography's Full Potential , 2016, Computer.

[42]  Sebastiano Vigna,et al.  Further scramblings of Marsaglia's xorshift generators , 2014, J. Comput. Appl. Math..

[43]  Christophe Guyeux,et al.  Random Walk in a N-Cube Without Hamiltonian Cycle to Chaotic Pseudorandom Number Generation: Theoretical and Practical Considerations , 2017, Int. J. Bifurc. Chaos.

[44]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[45]  Pierre L'Ecuyer,et al.  Maximally equidistributed combined Tausworthe generators , 1996, Math. Comput..

[46]  Melissa E. O'Neill PCG : A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation , 2014 .

[47]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[48]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[49]  Elaine B. Barker,et al.  Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths , 2011 .

[50]  Vamsi Boppana,et al.  Xilinx Zynq-7000 EPP: An extensible processing platform family , 2011, 2011 IEEE Hot Chips 23 Symposium (HCS).

[51]  Pawel Dabal,et al.  A study on fast pipelined pseudo-random number generator based on chaotic logistic map , 2014, 17th International Symposium on Design and Diagnostics of Electronic Circuits & Systems.