Analysis of the 1H‐NMR spectra of ferrichrome peptides. II. The amide resonances

The high‐resolution 1H‐nmr study of the ferrichrome cyclohexapeptides, in d6‐DMSO solutions, has been extended to the amide NH spectral region. A total of ten diamagnetic analogues of ferrichrome that differ in the coordinated metal ion (Al3+, Ga3+ or Co3+), the primary structure, the nature of the bidentate hydroxamate moiety, or the isotope compositions (14N, 15N) have been investigated. The 3JαNH values reflect regiorous conformational isomorphism throughout the complete suite of analogues, quite independent of the residue occupancy of each site. Totally resolved amide multiplets have been obtained in most cases and the four‐line (doublet of doublets) appearances of glycyl NH resonances has been observed for the first times; these data enabled stereospecific assignment and accurate analysis of the NH‐CαH proton spin systems. The high resolution was made possible by the use of a suitable spectral deconvolution shceme at 360 MHz. The fine structure, extraordinarily well displayed in the 15N‐peptide spectra, provides a series of parameter values whose consistency has been checked by computer simulation. Since the crystallographic structure for two of the ferric peptides is known to 0.002‐Å resolution, a 3J vs θ correspondence could be confidently established. A Karplus curve was derived from the combined x‐ray and nmr data: \documentclass{article}\pagestyle{empty}\begin{document}$$ ^3 J_{\alpha {\rm NH}} = 5.4\cos ^2 \theta - 1.3\cos \theta + 2.2{\rm Hz} $$\end{document} It is suggested that seriously nonplanar amides can exhibit 3JαNH values higher than predicted by the ferrichrome curve.

[1]  R. Dwek,et al.  NMR in Biological Research: Peptides and Proteins , 1978 .

[2]  M. Llinás,et al.  Peptide strain. Conformation dependence of the carbon-13 nuclear magnetic resonance chemical shifts in the ferrichromes. , 1977, Journal of the American Chemical Society.

[3]  M. Llinás,et al.  Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform technique. , 1976, Journal of the American Chemical Society.

[4]  K. Wüthrich,et al.  Digital filtering with a sinusoidal window function: An alternative technique for resolution enhancement in FT NMR , 1976 .

[5]  M. Llinás,et al.  13C nuclear magnetic resonance of the errichrome peptides: structural and strain contributions to the conformational state. , 1976, Journal of molecular biology.

[6]  C. Brändén,et al.  On the conformation of cyclic iron-containing hexapeptides: the crystal and molecular structure of ferrichrysin. , 1975, Journal of molecular biology.

[7]  J. W. Edmonds,et al.  The crystal and molecular structure of the triclinic and monoclinic forms of valinomycin, C54H90N6O18. , 1975, Journal of the American Chemical Society.

[8]  I. Karle CONFORMATION OF VALINOMYCIN IN A TRICLINIC CRYSTAL FORM , 1975 .

[9]  M. Llinás,et al.  Solution conformation of the ferrichromes. VI. Charge relay at the peptide bond. Proton magnetic resonance study of solvation effects on the amide electron density distribution , 1975 .

[10]  J. Deisenhofer,et al.  Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at l.5 Å resolution , 1975 .

[11]  J. Neel,et al.  Experimental calibration of a Karplus relationship in order to study the conformations of peptides by nuclear magnetic resonance. , 1974, Macromolecules.

[12]  D. Patel,et al.  A comparison of the solution and crystal conformations for the alkali metal ion complex of antamanide. , 1974, Biochemistry.

[13]  M. Llinás,et al.  Effect of metal binding on the conformation of enterobactin. A proton and carbon-13 nuclear magnetic resonance study. , 1973, Biochemistry.

[14]  Richard R. Ernst,et al.  Fourier Spectroscopy and the Causality Principle , 1973 .

[15]  G. N. Ramachandran,et al.  The non-planar peptide unit. II. Comparison of theory with crystal structure data. , 1973, Biochimica et biophysica acta.

[16]  M. Barfield,et al.  Conformational dependence of vicinal H-N-C-H coupling constants in peptides. , 1973, Journal of the American Chemical Society.

[17]  M. Llinás,et al.  Solution conformation of the ferrichromes. A comparative proton magnetic resonance study of glycine- and serine-containing ferrichromes. , 1972, Journal of molecular biology.

[18]  W. Burgermeister,et al.  Antamanide. Evidence for a conformational change and non planar amide groups. , 1972, Biochemical and biophysical research communications.

[19]  D. Patel,et al.  Determination of the solution conformations of cyclic polypeptides , 1972 .

[20]  H. Hauptman,et al.  Valinomycin Crystal Structure Determination by Direct Methods , 1972, Science.

[21]  K. Kopple,et al.  Conformations of cyclic peptides. VI. Factors influencing mono-, 1,4-di-, and 1,2,4-trisubstituted cyclic hexapeptide backbones. , 1972, Journal of the American Chemical Society.

[22]  G. N. Ramachandran,et al.  Variation of the NH–CαH coupling constant with dihedral angle in the NMR spectra of peptides , 1971 .

[23]  F. Winkler,et al.  The non-planar amide group. , 1971, Journal of molecular biology.

[24]  M. Llinás,et al.  Solution conformation of ferrichrome, a microbial iron transport cyclohexapeptide, as deduced by high resolution proton magnetic resonance. , 1970, Journal of molecular biology.

[25]  G. Némethy,et al.  An approach to conformational analysis of peptides and proteins in solution based on a combination of nuclear magnetic resonance spectroscopy and conformational energy calculations. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[27]  J. D. Forrester,et al.  Ferrichrome-A tetrahydrate. Determination of crystal and molecular structure. , 1966, Journal of the American Chemical Society.

[28]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[29]  H. Mcconnell,et al.  Analysis of High‐Resolution NMR Spectra , 1957 .

[30]  V. T. Ivanov,et al.  Conformational states and biological activity of cyclic peptides , 1975 .

[31]  V. T. Ivanov,et al.  Refinement of the angular dependence of the peptide vicinal NHCαH coupling constant , 1973 .

[32]  M. Llinás Metal-polypeptide interactions: The conformational state of iron proteins , 1973 .

[33]  V. Bystrov,et al.  Theoretical caculation op the peptide NH-CαH vicinal coupling constant , 1973 .

[34]  H. Wyssbrod,et al.  Conformation – Function Relationships in Peptides and Proteins Part 1. Naturally Occurring Peptides , 1973 .

[35]  V. T. Ivanov,et al.  Conformational studies of peptide systems. The rotational states of the NH--CH fragment of alanine dipeptides by nuclear magnetic resonance. , 1969, Tetrahedron.

[36]  M. Karplus,et al.  Valence-bond bond-order formulation for contact nuclear spin-spin coupling , 1969 .

[37]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .