Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation

The preparation and the performance of mixed matrix membranes based on metal-organic polyhedra (MOPs) are reported. MOP fillers can be dispersed as discrete molecular units (average 9 nm in diameter) when low filler cargos are used. In spite of the low doping amount (1.6 wt %), a large performance enhancement in permeability, aging resistance, and selectivity can be achieved. We rationalize this effect on the basis of the large surface to volume ratio of the filler, which leads to excellent dispersion at low concentrations and thus alters polymer packing. Although membranes based only on the polymer component age quickly with time, the performance of the resulting MOP-containing membranes meets the commercial target for postcombustion CO2 capture for more than 100 days.

[1]  F. Kapteijn,et al.  Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture. , 2018, Chemistry.

[2]  F. Kapteijn,et al.  High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer , 2018 .

[3]  J. Gascón,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[4]  Yichang Pan,et al.  Amino‐Functionalized ZIF‐7 Nanocrystals: Improved Intrinsic Separation Ability and Interfacial Compatibility in Mixed‐Matrix Membranes for CO2/CH4 Separation , 2017, Advanced materials.

[5]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[6]  H. Kusuda,et al.  Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles , 2017, Nature Energy.

[7]  Hongchao Mao,et al.  Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. , 2017, Journal of colloid and interface science.

[8]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[9]  Tai‐Shung Chung,et al.  Molecularly Tuned Free Volume of Vapor Cross‐Linked 6FDA‐Durene/ZIF‐71 MMMs for H2/CO2 Separation at 150 °C , 2017, Advanced materials.

[10]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[11]  F. Kapteijn,et al.  Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2 /CH4 Separation. , 2016, Chemistry.

[12]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[13]  Liangjun Hu,et al.  Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance , 2016, Advanced materials.

[14]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[15]  Dan Zhao,et al.  Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation , 2016 .

[16]  H. Vardhan,et al.  Self-assembled metal-organic polyhedra: An overview of various applications , 2016 .

[17]  A. Thornton,et al.  AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes , 2015 .

[18]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[19]  Naixin Wang,et al.  Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. , 2014, Chemical communications.

[20]  J. Ferraris,et al.  Metal-organic polyhedra 18 mixed-matrix membranes for gas separation , 2014 .

[21]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[22]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[23]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[24]  Xinlei Liu,et al.  An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. , 2011, Angewandte Chemie.

[25]  Donald R Paul,et al.  Physical aging of 6FDA-based polyimide membranes monitored by gas permeability , 2011 .

[26]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[27]  Hong-Cai Zhou,et al.  Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. , 2010, Nature chemistry.

[28]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[29]  William J. Koros,et al.  Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. , 2009, Journal of the American Chemical Society.

[30]  M. O'keeffe,et al.  Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. , 2008, Journal of the American Chemical Society.

[31]  L. Robeson,et al.  The upper bound revisited , 2008 .

[32]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[33]  M. Eddaoudi,et al.  Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. , 2001, Journal of the American Chemical Society.

[34]  Nobuhiro Takeda,et al.  A nanometre-sized hexahedral coordination capsule assembled from 24 components , 1999, Nature.

[35]  P. Stang,et al.  Self-assembly of nanoscale cuboctahedra by coordination chemistry , 1999, Nature.

[36]  J. P. Boom,et al.  Transport through zeolite filled polymeric membranes , 1998 .