Two-Step Co-Sintering Method to Fabricate Anode-Supported Ba 3 Ca 1.18 Nb 1.82 O 9-δ Proton-Conducting Solid Oxide Fuel Cells

[1]  S. Decterov,et al.  Experimental study and thermodynamic optimization of the CaO–NiO, MgO–NiO and NiO–SiO2 systems , 2012 .

[2]  F. Chen,et al.  Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conducting ceramic by a modified Pechini method , 2012 .

[3]  F. Chen,et al.  Doping Effects on Complex Perovskite Ba 3 Ca 1.18 Nb 1.82 O 9-δ Intermediate Temperature Proton Conductor , 2011 .

[4]  F. Chen,et al.  Novel BaCe0.7In0.2Yb0.1O3−δ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells , 2011 .

[5]  Chenghao Yang,et al.  Ba0.9Co0.7Fe0.2Nb0.1O3 − δ as cathode material for intermediate temperature solid oxide fuel cells , 2011 .

[6]  M. Gabás,et al.  Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors , 2011 .

[7]  Longtu Li,et al.  Microstructure Evolution and Dielectric Properties of Ultrafine Grained BaTiO3‐Based Ceramics by Two‐Step Sintering , 2011 .

[8]  Siwei Wang,et al.  Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte , 2011 .

[9]  F. Chen,et al.  Spin-coating derived solid oxide fuel cells operated at temperatures of 500 °C and below , 2010 .

[10]  P. Slater,et al.  Enhancement of the conductivity of Ba(2)In(2)O(5) through phosphate doping. , 2010, Chemical communications.

[11]  M. Mazaheri,et al.  Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique , 2010 .

[12]  F. Figueiredo,et al.  Two-step sintering ceria-based electrolytes , 2010 .

[13]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[14]  J. Zhai,et al.  Dielectric tunable properties of Ba0.6Sr0.4TiO3–BaZn6Ti6O19 microwave composite ceramics , 2009 .

[15]  W. Liu,et al.  In Situ Fabrication of a Supported Ba3Ca1.18Nb1.82O9-δ Membrane Electrolyte for a Proton-Conducting SOFC , 2008 .

[16]  S. Licoccia,et al.  Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) , 2008 .

[17]  K. Knight,et al.  Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. , 2007, Nature materials.

[18]  H. Kageyama,et al.  Transport properties of Ba (Zr0.8Y0.2)O3- δ perovskite , 2007 .

[19]  T. Norby,et al.  Proton conduction in rare-earth ortho-niobates and ortho-tantalates , 2006 .

[20]  S. Haile,et al.  Atomistic Study of Doped BaCeO3: Dopant Site-Selectivity and Cation Nonstoichiometry , 2005 .

[21]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[22]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[23]  K. Liang,et al.  Some factors that determine proton conductivity in nonstoichiometric complex perovskites , 1999 .

[24]  H. Bohn,et al.  The high temperature proton conductor Ba3Ca1.18Nb1.82O9−δ. I. Electrical conductivity , 1999 .

[25]  G. Meng,et al.  Preparation of Nd-doped barium cerate through different routes , 1997 .

[26]  A. Nowick,et al.  High-temperature protonic conductors with perovskite-related structures , 1995 .

[27]  T. Tien,et al.  The System NO‐CaO , 1969 .

[28]  K. Maca,et al.  Two-Step Sintering of oxide ceramics with various crystal structures , 2010 .

[29]  H. Iwahara,et al.  High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes , 1982 .

[30]  V. S. Bagotzky Power sources 7 : Edited by J. Thompson, published by Academic Press, London, 1979, 774 pp., £65.00 or $134.50. , 1980 .