State feedback H ∞ control of commensurate fractional-order systems

This article focuses on the state feedback H ∞ control problem for commensurate fractional-order systems with a prescribed H ∞ performance. For linear time-invariant fractional-order systems, a sufficient condition to guarantee stability with H ∞ performance is firstly presented. Then, by introducing a new flexible real matrix variable, the feedback gain is decoupled with complex matrix variables and further parametrised by the new flexible matrix. Moreover, iterative linear matrix inequality algorithms with initial optimisation are developed to solve the state feedback H ∞ suboptimal control problem for fractional-order systems. Finally, illustrative examples are given to show the effectiveness of the proposed approaches.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[3]  Yongduan Song,et al.  ${\cal H}_{\infty}$ Model Reduction of Takagi–Sugeno Fuzzy Stochastic Systems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[5]  James Lam,et al.  On positive filtering with ℋ ∞ performance for compartmental networks , 2009, Int. J. Syst. Sci..

[6]  Peng Shi,et al.  H∞ fuzzy output feedback control design for nonlinear systems: an LMI approach , 2003, IEEE Trans. Fuzzy Syst..

[7]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[8]  Mathieu Moze,et al.  On bounded real lemma for fractional systems , 2008 .

[9]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[10]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[11]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[12]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[13]  J. Sabatier,et al.  On Fractional Systems H∞, -Norm Computation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Jianbin Qiu,et al.  Model Approximation for Discrete-Time State-Delay Systems in the T–S Fuzzy Framework , 2011, IEEE Transactions on Fuzzy Systems.

[15]  James Lam,et al.  Positivity-preserving H∞ model reduction for positive systems , 2011, Autom..

[16]  James Lam,et al.  An augmented system approach to static output‐feedback stabilization with ℋ︁∞ performance for continuous‐time plants , 2009 .

[17]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[18]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[19]  Ligang Wu,et al.  A New Approach to Stability Analysis and Stabilization of Discrete-Time T-S Fuzzy Time-Varying Delay Systems , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[21]  Yugang Niu,et al.  Stabilization of Markovian jump linear system over networks with random communication delay , 2009, Autom..

[22]  Yongduan Song,et al.  A Novel Approach to Filter Design for T–S Fuzzy Discrete-Time Systems With Time-Varying Delay , 2012, IEEE Transactions on Fuzzy Systems.

[23]  Alain Oustaloup,et al.  On the CRONE Suspension , 2014 .

[24]  Yisheng Zhong,et al.  State feedback H∞ optimal control for linear fractional-order systems , 2010, Proceedings of the 29th Chinese Control Conference.

[25]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[26]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[27]  Michael V. Basin,et al.  Central suboptimal mean-square H ∞ controller design for linear stochastic time-varying systems , 2011, Int. J. Syst. Sci..

[28]  Michael V. Basin,et al.  Central suboptimal H ∞ controller design for linear time-varying systems with unknown parameters , 2011, Int. J. Syst. Sci..

[29]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[30]  P. Shi,et al.  Fuzzy H∞ output feedback control of nonlinear systems under sampled measurements , 2001, IEEE Conference on Decision and Control.

[31]  Michael V. Basin,et al.  Central suboptimal H ∞ filter design for linear time-varying systems with state and measurement delays , 2010, Int. J. Syst. Sci..

[32]  Guanghong Yang,et al.  SYSTEMS WITH QUANTIZATION AND RANDOM COMMUNICATION DELAYS , 2010 .

[33]  Yugang Niu,et al.  Robust Filtering Design for Stochastic System With Mode-Dependent Output Quantization , 2010, IEEE Transactions on Signal Processing.

[34]  P. Chevrel,et al.  State feedback H2 optimal controllers under regulation constraints for descriptor systems , 2011 .

[35]  Peng Shi,et al.  Central suboptimal H∞ control design for nonlinear polynomial systems , 2009, 2009 American Control Conference.

[36]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[37]  Abdelfatah Charef,et al.  Control quality enhancement using fractional PIλDμ controller , 2009, Int. J. Syst. Sci..

[38]  Massimiliano Giona,et al.  Fractional diffusion equation and relaxation in complex viscoelastic materials , 1992 .

[39]  C. Yeroglu,et al.  Note on fractional-order proportional–integral–differential controller design , 2011 .