Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows

We extend the well-known Serrin's blowup criterion for the three-dimensional (3D) incompressible Navier–Stokes equations to the 3D viscous compressible cases. It is shown that for the Cauchy problem of the 3D compressible Navier–Stokes equations in the whole space, the strong or smooth solution exists globally if the velocity satisfies the Serrin's condition and either the supernorm of the density or the $L^1(0,T;L^\infty)$-norm of the divergence of the velocity is bounded. Furthermore, in the case that either the shear viscosity coefficient is suitably large or there is no vacuum, the Serrin's condition on the velocity can be removed in this criterion.

[1]  Hyunseok Kim,et al.  A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier-Stokes Equations , 2006, SIAM J. Math. Anal..

[2]  David Hoff,et al.  Compressible Flow in a Half-Space with Navier Boundary Conditions , 2005 .

[3]  David Hoff,et al.  Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data , 1987 .

[4]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[5]  Bum Ja Jin,et al.  Blow-up of viscous heat-conducting compressible flows , 2006 .

[6]  J. Lions,et al.  Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible , 1986 .

[7]  Hyunseok Kim,et al.  On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities , 2006 .

[8]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[9]  V. V. Shelukhin,et al.  Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .

[10]  H Xiangdi Blowup Criterion for the Compressible Flows with Vacuum States , 2011 .

[11]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .

[12]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[13]  Hi Jun Choe,et al.  Strong solutions of the Navier-Stokes equations for isentropic compressible fluids , 2003 .

[14]  David Hoff,et al.  Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data , 1995 .

[15]  Song Jiang,et al.  BLOW-UP CRITERIA FOR THE NAVIER–STOKES EQUATIONS OF COMPRESSIBLE FLUIDS , 2008 .

[16]  Hi Jun Choe,et al.  Regularity of weak solutions of the compressible Navier-Stokes equations , 2001 .

[17]  Zhouping Xin,et al.  A blow-up criterion for classical solutions to the compressible Navier-Stokes equations , 2009, 0903.3090.

[18]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[19]  Chao Wang,et al.  A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations , 2010, 1001.1247.

[20]  Hi Jun Choe,et al.  Unique solvability of the initial boundary value problems for compressible viscous fluids , 2004 .

[21]  David Hoff,et al.  Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data , 1995 .

[22]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[23]  Zhouping Xin,et al.  Blowup Criterion for Viscous Baratropic Flows with Vacuum States , 2010, 1004.5469.

[24]  J. Nash,et al.  Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .

[25]  Salvi Rodolfo,et al.  Global existence for viscous compressible fluids and their behavior as $t \to \infty$ , 1993 .

[26]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[27]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[28]  James Serrin,et al.  On the uniqueness of compressible fluid motions , 1959 .

[29]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .