Projected dynamical systems in a complementarity formalism

Projected dynamical systems have been introduced by Dupuis and Nagurney as dynamic extensions of variational inequalities. In the systems and control literature, complementarity systems have been studied as input/output dynamical systems whose inputs and outputs are connected through complementarity conditions. We show here that, under mild conditions, projected dynamical systems can be written as complementarity systems.

[1]  Per Lötstedt Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints , 1982 .

[2]  M. K. Camlibel,et al.  Uniqueness of solutions of relay systems , 1997 .

[3]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[4]  W. Rudin Principles of mathematical analysis , 1964 .

[5]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[6]  Arjan van der Schaft,et al.  Complementarity modelling of hybrid systems , 1997 .

[7]  Anna Nagurney,et al.  Dynamical systems and variational inequalities , 1993, Ann. Oper. Res..

[8]  Wpmh Maurice Heemels,et al.  Dynamical analysis of linear passive networks with ideal diodes. Part I: Well-posedness , 2000 .

[9]  Arjan van der Schaft,et al.  Uniqueness of solutions of linear relay systems , 1999, Autom..

[10]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[11]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[12]  S. Weiland,et al.  Applications of complementarity systems , 1999, 1999 European Control Conference (ECC).

[13]  .. P. M. H. Heemels,et al.  The Rational Complementarity ProblemW , 1998 .

[14]  Arjan van der Schaft,et al.  System theoretic descriptions of physical systems , 1983 .

[15]  A. Nagurney,et al.  Projected Dynamical Systems and Variational Inequalities with Applications , 1995 .

[16]  A. Nerode,et al.  Hybrid Control Systems: An Introductory Discussion to the Special Issue , 1998, IEEE Trans. Autom. Control..

[17]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[18]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[19]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[20]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[21]  Wpmh Maurice Heemels,et al.  Dynamical analysis of linear passive networks with ideal diodes. Part II: Consistency of a time-stepping method , 2000 .

[22]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[23]  P. Dupuis Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets , 1987 .

[24]  Van Bokhoven Piecewise-linear modelling and analysis , 1981 .

[25]  Arjan van der Schaft,et al.  The complementary-slackness class of hybrid systems , 1996, Math. Control. Signals Syst..

[26]  A. Skorokhod Stochastic Equations for Diffusion Processes in a Bounded Region , 1961 .

[27]  A. Seeger Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .

[28]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .