Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics

1 1 Deformation Theory of Complex Structures 2 1.1 Basic idea of analytic deformation theory . . . . . . . . . . . . . . . . 4 1.2 Existence of infinitesimal deformations . . . . . . . . . . . . . . . . . 7 1.3 Completeness of the analytic family . . . . . . . . . . . . . . . . . . . 11 2 Complex Deformation on Fano Kahler-Einstein Manifolds 17 2.1 Deformation of complex structures on Fano manifolds and gauge equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Deformation of the volume form and the Kahler-Einstein form . . . . 30 2.3 Deformation of plurianticanonical sections . . . . . . . . . . . . . . . 37 2.4 L-metric on the direct image sheaf . . . . . . . . . . . . . . . . . . . 44 2.5 Deformation of holomorphic vector fields . . . . . . . . . . . . . . . . 54 3 Pluri-subharmonicity of Harmonic Energy 59 3.1 Deformation of Kahler-Einstein manifolds of general type . . . . . . . 60 3.2 First variation of harmonic energy . . . . . . . . . . . . . . . . . . . . 63 3.3 Second variation of harmonic energy . . . . . . . . . . . . . . . . . . 66

[1]  Xiaofeng Sun Deformation of canonical metrics I , 2012 .

[2]  J. Morrow,et al.  Definitions and examples of complex manifolds , 2006 .

[3]  E. Calabi,et al.  A ug 2 00 1 Space of Kähler metrics 1 The Space of Kähler metrics ( II ) , 2001 .

[4]  D. Catlin The Bergman Kernel and a Theorem of Tian , 1999 .

[5]  G. Schumacher The Curvature of the Petersson-Weil Metric on the Moduli Space of Kähler-Einstein Manifolds , 1993 .

[6]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[7]  A. Todorov The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I , 1989 .

[8]  二木 昭人 Kähler-Einstein metrics and integral invariants , 1987 .

[9]  Y. Siu Curvature of the Weil-Petersson Metric in the Moduli Space of Compact Kähler-Einstein Manifolds of Negative First Chem Class , 1986 .

[10]  Huai-Dong Cao,et al.  Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .

[11]  N. Koiso Einstein metrics and complex structures , 1983 .

[12]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[13]  D. Spencer,et al.  46. Existence of Complex Structure on a Differentiable Family of Deformations of Compact Complex Manifolds , 1959 .

[14]  D. Spencer,et al.  On Deformations of Complex Analytic Structures, II , 1958 .

[15]  E. Calabi On Kähler Manifolds with Vanishing Canonical Class , 1957 .