Considerations on Water Vapor and Surface Reflectance Retrievals for a Spaceborne Imaging Spectrometer

The retrievals of atmospheric water vapor column and surface reflectance from air- or spaceborne hyperspectral imagery require accurate spectroradiometric calibration and a radiative transfer (RT) code. Since RT codes are too time consuming to be run on a per-pixel basis, a common technique employs the offline compilation of an atmospheric database and its subsequent use for the atmospheric correction of the image cube. The challenge is to design the size of the database as small as possible for a requested retrieval accuracy. We present a methodology to compile the database for a specified retrieval accuracy in water vapor and surface reflectance for a given set of input surface reflectance spectra and a chosen RT algorithm. The method is applied as a case study conducted for the planned German imaging spectrometer EnMAP. Some tradeoff considerations are also discussed. For the specified range of columnar water vapor (0.5-4.5 cm), results demonstrate that five water vapor grid points in the database are sufficient to achieve the requested relative root-mean-square retrieval accuracies of 2% and 3% in water vapor and surface reflectance, respectively. It should be pointed out that this is not intended as a general claim of retrieval accuracy achievable under typical remote sensing conditions, but these figures apply only to the theoretical conditions of the calculation, i.e., assuming the same conditions for forward simulation and retrieval. Nevertheless, these figures are indispensable for the design of a database, which is an important step for the atmospheric correction of imaging spectrometer data and the sole topic of this paper.

[1]  Yoram J. Kaufman,et al.  The atmospheric effect on the separability of field classes measured from satellites , 1985 .

[2]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[3]  Luis Alonso,et al.  A method for the surface reflectance retrieval from PROBA/CHRIS data over land: application to ESA SPARC campaigns , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Bo-Cai Gao,et al.  Determination of total column water vapor in the atmosphere at high spatial resolution from AVIRIS data using spectral curve fitting and band ratioing techniques , 1990, Other Conferences.

[5]  A. Goetz,et al.  Airborne imaging spectrometer: A new tool for remote sensing , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  J. Conel,et al.  Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm - Sensitivity analysis and application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data , 1993 .

[8]  Robert O. Green,et al.  Atmospheric water vapor sensitivity and compensation requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum , 2001 .

[9]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[10]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  K. Staenz,et al.  ISDAS – A System for Processing/Analyzing Hyperspectral Data , 1998 .

[12]  R. Richter A fast atmospheric correction algorithm applied to Landsat TM images , 1990 .

[13]  R. Richter,et al.  Bandpass-resampling effects on the retrieval of radiance and surface reflectance. , 2000, Applied optics.

[14]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[15]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[16]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[17]  Robert O. Green,et al.  On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Yoram J. Kaufman,et al.  Remote sensing of water vapor in the near IR from EOS/MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Rodolphe Marion,et al.  Measuring trace gases in plumes from hyperspectral remotely sensed data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[21]  Carl Schueler,et al.  Digital electro‐optical imaging sensors , 1992, Int. J. Imaging Syst. Technol..

[22]  R. Richter,et al.  Bandpass-resampling effects for the retrieval of surface emissivity. , 2002, Applied optics.

[23]  Petr Chylek,et al.  Satellite-based columnar water vapor retrieval with the multi-spectral thermal imager (MTI) , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[25]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[26]  Robert Frouin,et al.  Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .

[27]  Zheng Qu,et al.  HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[28]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .