Necessary Optimality Conditions for Multiobjective Bilevel Programs

The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near the optimal solution, we present various optimality conditions by replacing the lower-level problem with its KKT conditions. For the general multiobjective bilevel problem, we derive necessary optimality conditions by considering a combined problem, with both the value function and the KKT condition of the lower-level problem involved in the constraints. Most results of this paper are new, even for the case of a single-objective bilevel program, the case of a mathematical program with complementarity constraints, and the case of a multiobjective optimization problem.

[1]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[2]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[3]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[4]  J. Gauvin,et al.  Differential properties of the marginal function in mathematical programming , 1982 .

[5]  Qiji J. Zhu,et al.  Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..

[6]  Jane J. Ye,et al.  First-Order and Second-Order Conditions for Error Bounds , 2003, SIAM J. Optim..

[7]  Jane J. Ye,et al.  Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems , 2004, SIAM J. Optim..

[8]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[9]  Jane J. Ye,et al.  Erratum: Sensitivity Analysis of the Value Function for Optimization Problems With Variational Inequality Constraints , 2002, SIAM J. Control. Optim..

[10]  Jane J. Ye Constraint Qualifications and KKT Conditions for Bilevel Programming Problems , 2006, Math. Oper. Res..

[11]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[12]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[13]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[14]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[15]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[16]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[17]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[18]  Boris S. Mordukhovich,et al.  Set-valued optimization in welfare economics , 2010 .

[19]  Jane J. Ye,et al.  Sensitivity Analysis of the Value Function for Optimization Problems with Variational Inequality Constraints , 2001, SIAM J. Control. Optim..

[20]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[21]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[22]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[23]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[24]  Qiji J. Zhu,et al.  Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..

[25]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[26]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[27]  George B.Richardson The Theory of the Market Economy. , 1995, Revue économique.

[28]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[29]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[30]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[31]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[32]  William W. Hager,et al.  Stability in the presence of degeneracy and error estimation , 1999, Math. Program..

[33]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[34]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[35]  Boris S. Mordukhovich,et al.  Necessary Conditions in Multiobjective Optimization with Equilibrium Constraints , 2007 .

[36]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[37]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[38]  Jane J. Ye,et al.  A note on optimality conditions for bilevel programming problems , 1997 .

[39]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .