Activation of the ATR kinase by the RPA-binding protein ETAA1

[1]  W. Chazin,et al.  ETAA1 acts at stalled replication forks to maintain genome integrity , 2016, Nature Cell Biology.

[2]  P. Burgers,et al.  Probing the Mec1ATR Checkpoint Activation Mechanism with Small Peptides* , 2015, The Journal of Biological Chemistry.

[3]  Sean J Humphrey,et al.  High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics , 2015, Nature Biotechnology.

[4]  Manal M. Hassan,et al.  Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer , 2015, Nature Genetics.

[5]  Jürgen Cox,et al.  Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links , 2015, Science.

[6]  Haiyuan Yu,et al.  Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. , 2015, Molecular cell.

[7]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[8]  Andrew R. Jones,et al.  ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination , 2014, Nature Biotechnology.

[9]  R. Muschel,et al.  Targeting ATR in DNA damage response and cancer therapeutics. , 2014, Cancer treatment reviews.

[10]  N. Mailand,et al.  ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA , 2013, Cell.

[11]  K. Cimprich,et al.  Causes and consequences of replication stress , 2013, Nature Cell Biology.

[12]  L. Zou,et al.  DNA damage sensing by the ATM and ATR kinases. , 2013, Cold Spring Harbor perspectives in biology.

[13]  Zhao-Qi Wang,et al.  An Essential Function for the ATR-Activation-Domain (AAD) of TopBP1 in Mouse Development and Cellular Senescence , 2013, PLoS genetics.

[14]  J. Qin,et al.  ATR phosphorylates SMARCAL1 to prevent replication fork collapse. , 2013, Genes & development.

[15]  L. Zou,et al.  Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. , 2013, Cell reports.

[16]  K. Cimprich,et al.  A role for the MRN complex in ATR activation via TOPBP1 recruitment. , 2013, Molecular cell.

[17]  Y. Shiloh,et al.  The ATM protein kinase: regulating the cellular response to genotoxic stress, and more , 2013, Nature Reviews Molecular Cell Biology.

[18]  P. Burgers,et al.  Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. , 2013, Genes & development.

[19]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[20]  S. V. Nielsen,et al.  DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks , 2012, Nature Structural &Molecular Biology.

[21]  Chunaram Choudhary,et al.  Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. , 2012, Molecular cell.

[22]  N. Mailand,et al.  Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks , 2012, The Journal of cell biology.

[23]  Wen Tan,et al.  Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations , 2011, Nature Genetics.

[24]  L. Symington,et al.  Double-strand break end resection and repair pathway choice. , 2011, Annual review of genetics.

[25]  S. Elledge,et al.  A DNA Damage Response Screen Identifies RHINO, a 9-1-1 and TopBP1 Interacting Protein Required for ATR Signaling , 2011, Science.

[26]  James R Bischoff,et al.  A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations , 2011, Nature Structural &Molecular Biology.

[27]  B. Neumann,et al.  53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress , 2011, Nature Cell Biology.

[28]  O. Fernandez-Capetillo,et al.  The ATR barrier to replication-born DNA damage. , 2010, DNA repair.

[29]  David J. Chen,et al.  ATM-Dependent and -Independent Dynamics of the Nuclear Phosphoproteome After DNA Damage , 2010, Science Signaling.

[30]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[31]  P. Burgers,et al.  The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. , 2009, Molecular cell.

[32]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[33]  S. Elledge,et al.  The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. , 2009, Genes & development.

[34]  W. Chazin,et al.  The Basic Cleft of RPA70N Binds Multiple Checkpoint Proteins, Including RAD9, To Regulate ATR Signaling , 2008, Molecular and Cellular Biology.

[35]  K. Cimprich,et al.  ATR: an essential regulator of genome integrity , 2008, Nature Reviews Molecular Cell Biology.

[36]  R. Zhao,et al.  TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. , 2008, Genes & development.

[37]  O. Fernandez-Capetillo,et al.  ATR signaling can drive cells into senescence in the absence of DNA breaks. , 2008, Genes & development.

[38]  A. Kumagai,et al.  The Rad9-Hus1-Rad1 Checkpoint Clamp Regulates Interaction of TopBP1 with ATR* , 2007, Journal of Biological Chemistry.

[39]  L. Karnitz,et al.  The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. , 2007, Genes & development.

[40]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[41]  Aziz Sancar,et al.  The Human Tim/Tipin Complex Coordinates an Intra-S Checkpoint Response to UV That Slows Replication Fork Displacement , 2007, Molecular and Cellular Biology.

[42]  M. Mann,et al.  A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC) , 2006, Nature Protocols.

[43]  Kanyawim Kirtikara,et al.  Sulforhodamine B colorimetric assay for cytotoxicity screening , 2006, Nature Protocols.

[44]  Jiri Bartek,et al.  Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks , 2006, The Journal of cell biology.

[45]  U. Dirksen,et al.  Structure and function of ETAA16: a novel cell surface antigen in Ewing’s tumours , 2006, Cancer Immunology, Immunotherapy.

[46]  A. Kumagai,et al.  TopBP1 Activates the ATR-ATRIP Complex , 2006, Cell.

[47]  M. Pacek,et al.  Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. , 2005, Genes & development.

[48]  Sonnet J. H. Arlander,et al.  Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. , 2004, DNA repair.

[49]  Stephen J. Elledge,et al.  Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes , 2003, Science.

[50]  Judith A. Goodship,et al.  A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome , 2003, Nature Genetics.

[51]  S. Elledge,et al.  Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. , 2002, Genes & development.

[52]  Junjie Chen,et al.  Histone H2AX Is Phosphorylated in an ATR-dependent Manner in Response to Replicational Stress* , 2001, The Journal of Biological Chemistry.

[53]  Jun Qin,et al.  ATR and ATRIP: Partners in Checkpoint Signaling , 2001, Science.

[54]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[55]  Christine Brun,et al.  In silico prediction of protein-protein interactions in human macrophages , 2001, BMC Research Notes.

[56]  W. Brownell,et al.  Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. , 2000, Genes & development.

[57]  C. Ingles,et al.  Structural Basis for the Recognition of DNA Repair Proteins UNG2, XPA, and RAD52 by Replication Factor RPA , 2000, Cell.

[58]  S. Elledge,et al.  Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. , 2000, Genes & development.

[59]  A. Carr,et al.  Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice , 2000, Current Biology.

[60]  D. Baltimore,et al.  ATR disruption leads to chromosomal fragmentation and early embryonic lethality. , 2000, Genes & development.

[61]  S. Elledge,et al.  Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. , 1998, Science.

[62]  Y. Shiloh,et al.  The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. , 2013, Nature reviews. Molecular cell biology.

[63]  T. Lindahl,et al.  Repair of endogenous DNA damage. , 2000, Cold Spring Harbor symposia on quantitative biology.