The Effect of Using Hierarchical Classifiers in Text Categorization

Given a set of categories, with or without a preexisting hierarchy among them, we consider the problem of assigning documents to one or more of these categories from the point of view of a hierarchy with more or less depth. We can choose to make use of none, part or all of the hierarchical structure to improve the categorization effectiveness and efficiency. It is possible to create additional hierarchy among the categories. We describe a procedure for generating a hierarchy of classifiers that models the hierarchy structure. We report on computational experience using this procedure. We show that judicious use of a hierarchy can significantly improve both the speed and effectiveness of the categorization process. Using the Reuters-21578 corpus, we obtain an improvement in running time of over a factor of three and a 5% improvement in F-measure.

[1]  Aaron Kershenbaum,et al.  Category Levels in Hierarchical Text Categorization , 1998, EMNLP.

[2]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[3]  David Heckerman,et al.  Bayesian Networks for Knowledge Discovery , 1996, Advances in Knowledge Discovery and Data Mining.

[4]  Aaron Kershenbaum,et al.  The Effect of Topological Structure on Hierarchical Text Categorization , 1998, VLC@COLING/ACL.

[5]  Prabhakar Raghavan,et al.  Using Taxonomy, Discriminants, and Signatures for Navigating in Text Databases , 1997, VLDB.

[6]  Sholom M. Weiss,et al.  Automated learning of decision rules for text categorization , 1994, TOIS.

[7]  hierarchyDunja Mladeni Feature Selection for Classiication Based on Text Hierarchy , 1998 .

[8]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[9]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[10]  Hwee Tou Ng,et al.  Feature selection, perceptron learning, and a usability case study for text categorization , 1997, SIGIR '97.

[11]  David D. Lewis Text representation for intelligent text retrieval: a classification-oriented view , 1992 .

[12]  Y Yang An evaluation of statistical approaches to MEDLINE indexing. , 1996, Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium.

[13]  David D. Lewis,et al.  A comparison of two learning algorithms for text categorization , 1994 .

[14]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[15]  Gilbert H. Young,et al.  ACTION: automatic classification for full-text documents , 1996, SIGF.

[16]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[17]  Mehran Sahami,et al.  Learning Limited Dependence Bayesian Classifiers , 1996, KDD.

[18]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[19]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .