Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells

In this study, we provide insights into planar structure methylammonium lead triiodide (MAPbI3) perovskite solar cells (PSCs) using electroluminescence and photoluminescence imaging techniques. We demonstrate the strength of these techniques in screening relatively large area PSCs, correlating the solar cell electrical parameters to the images and visualizing the features which contribute to the variation of the parameters extracted from current density-voltage characterizations. It is further used to investigate one of the major concerns about perovskite solar cells, their long term stability and aging. Upon storage under dark in dry glovebox condition for more than two months, the major parameter found to have deteriorated in electrical performance measurements was the fill factor; this was elucidated via electroluminescence image comparisons which revealed that the contacts' quality degrades. Interestingly, by deploying electroluminescence imaging, the significance of having a pin-hole free active layer is demonstrated. Pin-holes can grow over time and can cause degradation of the active layer surrounding them.

[1]  Y. Kanemitsu,et al.  Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells. , 2016, Optics express.

[2]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[3]  J. Bisquert,et al.  Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells , 2016 .

[4]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[5]  Wei Huang,et al.  Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches , 2016 .

[6]  U. Bach,et al.  Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates , 2016 .

[7]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[8]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[9]  Wei Zhang,et al.  Pinhole-free perovskite films for efficient solar modules , 2016 .

[10]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[11]  M. Green,et al.  Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites , 2016 .

[12]  Martin A. Green,et al.  Commercial progress and challenges for photovoltaics , 2016, Nature Energy.

[13]  Mario Caironi,et al.  Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the J–V Characteristics of Inverted Hybrid Perovskite Solar Cells , 2016 .

[14]  M. Green,et al.  Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites , 2015 .

[15]  Ziv Hameiri,et al.  Photoluminescence and electroluminescence imaging of perovskite solar cells , 2015 .

[16]  M. Schubert,et al.  Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging. , 2015, Nanoscale.

[17]  M. Green,et al.  Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[18]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[19]  M. Yoshita,et al.  Degradation mechanism of perovskite CH3NH3PbI3 diode devices studied by electroluminescence and photoluminescence imaging spectroscopy , 2015 .

[20]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[21]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[22]  H. Sirringhaus,et al.  Local Versus Long‐Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites , 2015, Advanced science.

[23]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[24]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[25]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[26]  J. Galisteo‐López,et al.  Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.

[27]  Y. Qi,et al.  Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering , 2015, Scientific Reports.

[28]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[29]  Ivan Mora-Sero,et al.  Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. , 2015, The journal of physical chemistry letters.

[30]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[31]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[32]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[33]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[34]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[35]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[36]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[37]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[38]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[39]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[40]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[41]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[42]  J. Sites,et al.  Electroluminescence system for analysis of defects in CdTe cells and modules , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[43]  Suren A. Gevorgyan,et al.  Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration , 2012 .

[44]  Marco Seeland,et al.  Quantitative analysis of electroluminescence images from polymer solar cells , 2012 .

[45]  Thorsten Trupke,et al.  Photoluminescence Imaging for Photovoltaic Applications , 2012 .

[46]  H. Hoppe,et al.  Luminescence imaging of polymer solar cells: Visualization of progressing degradation , 2011 .

[47]  B. Cardozo,et al.  Quantitative imaging of electronic nonuniformities in Cu(In,Ga)Se2 solar cells , 2010 .

[48]  Thomas Kirchartz,et al.  Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules , 2010 .

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[50]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[51]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[52]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[53]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .