Saving Colors and Max Coloring: Some Fixed-Parameter Tractability Results

Max coloring is a well known generalization of the usual Min Coloring problem, widely studied from standard complexity and approximation viewpoints. Here, we tackle this problem under the framework of parameterized complexity. In particular, we first show to what extend the result of [3] - saving colors from the trivial bound of n on the chromatic number - extends to Max Coloring. Then we consider possible improvements of these results by considering the problem of saving colors/weight with respect to a better bound on the chromatic number. Finally, we consider the fixed parameterized tractability of Max Coloring in restricted graph classes under standard parameterization.

[1]  Xuding Zhu,et al.  A Coloring Problem for Weighted Graphs , 1997, Inf. Process. Lett..

[2]  Stefan Kratsch,et al.  Data Reduction for Graph Coloring Problems , 2011, FCT.

[3]  Rajiv Raman,et al.  Approximation Algorithms for the Max-coloring Problem , 2005, ICALP.

[4]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[5]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[6]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[7]  Refael Hassin,et al.  The maximum saving partition problem , 2005, Oper. Res. Lett..

[8]  Vangelis Th. Paschos,et al.  Weighted Coloring: Further Complexity and Approximability Results , 2005, ICTCS.

[9]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[10]  D. de Werra,et al.  Time slot scheduling of compatible jobs , 2007, J. Sched..

[11]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[12]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[13]  Vangelis Th. Paschos,et al.  Weighted coloring on planar, bipartite and split graphs: Complexity and approximation , 2009, Discret. Appl. Math..

[14]  David S. Johnson,et al.  Stockmeyer: some simplified np-complete graph problems , 1976 .

[15]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[16]  Nicolas Nisse,et al.  Weighted Coloring in Trees , 2014, SIAM J. Discret. Math..

[17]  Tim Nonner Clique Clustering Yields a PTAS for max-Coloring Interval Graphs , 2011, ICALP.