Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters

This paper introduces a new type of synchronization method of adaptive modified projective synchronization with complex scaling matrix (ACMPS) for two $$n$$n-dimensional complex chaotic (hyperchaotic) systems with uncertain complex parameters. By choosing appropriate Lyapunov functions dependent on complex variables, and employing adaptive control technique, sufficient criteria on ACMPS are derived. Moreover, in the complex space, the slave system can be asymptotically synchronized up to nonidentical or identical master system by a desired complex scaling matrix, and all of unknown parameters in both master and slave systems are achieved to be identified by virtue of the complex update laws. Finally, two examples are worked out to verify the effectiveness and feasibility of the theoretical results.

[1]  Livija Cveticanin,et al.  Resonant vibrations of nonlinear rotors , 1995 .

[2]  L. C. Gómez-Pavón,et al.  Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems , 2012 .

[3]  Mark J. McGuinness,et al.  The real and complex Lorenz equations and their relevance to physical systems , 1983 .

[4]  Xiang Li,et al.  Adaptive modified function projective synchronization of general uncertain chaotic complex systems , 2012 .

[5]  César Cruz-Hernández,et al.  Chaotic Communication System Using Chua's oscillators Realized with Ccii+s , 2009, Int. J. Bifurc. Chaos.

[6]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[7]  T. Bountis,et al.  Dynamical properties and synchronization of complex non-linear equations for detuned lasers , 2009 .

[8]  Chao Luo,et al.  Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification , 2013, J. Frankl. Inst..

[9]  Shutang Liu,et al.  Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances , 2012 .

[10]  Emad E. Mahmoud,et al.  Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters , 2012, J. Frankl. Inst..

[11]  Emad E. Mahmoud,et al.  Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems , 2010 .

[12]  G. J. M. Maree,et al.  Slow Periodic Crossing of a Pitchfork Bifurcation in an Oscillating System , 1997 .

[13]  Fangfang Zhang,et al.  Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems , 2014 .

[14]  Fangfang Zhang,et al.  Complex function projective synchronization of complex chaotic system and its applications in secure communication , 2013, Nonlinear Dynamics.

[15]  On asymptotic properties of some complex Lorenz-like systems , 2005, nlin/0509045.

[16]  Paul Mandel,et al.  Influence of detuning on the properties of laser equations , 1985 .

[17]  Xinchu Fu,et al.  Complex projective synchronization in coupled chaotic complex dynamical systems , 2012 .

[18]  Fangfang Zhang,et al.  Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos , 2013 .

[19]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[20]  Tassos Bountis,et al.  Active Control and Global Synchronization of the Complex Chen and lÜ Systems , 2007, Int. J. Bifurc. Chaos.

[21]  G. Mahmoud,et al.  Lag synchronization of hyperchaotic complex nonlinear systems , 2012 .

[22]  Emad E. Mahmoud,et al.  Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems , 2014 .

[23]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[24]  H. Haken,et al.  Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  Luigi Fortuna,et al.  Chua's Circuit Implementations: Yesterday, Today and Tomorrow , 2009 .

[26]  Emad E. Mahmoud,et al.  Complex modified projective synchronization of two chaotic complex nonlinear systems , 2013 .

[27]  Gamal M. Mahmoud,et al.  BASIC PROPERTIES AND CHAOTIC SYNCHRONIZATION OF COMPLEX LORENZ SYSTEM , 2007 .

[28]  Mark J. McGuinness,et al.  The real and complex Lorenz equations in rotating fluids and lasers , 1982 .

[29]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[30]  Emad E. Mahmoud,et al.  Synchronization and control of hyperchaotic complex Lorenz system , 2010, Math. Comput. Simul..

[31]  R. Dilão,et al.  Nonlinear Dynamics in Particle Accelerators , 1997 .

[32]  Ping Liu,et al.  Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters , 2011 .

[33]  Esteban Tlelo-Cuautle,et al.  Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators , 2014 .

[34]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[35]  Jesus M. Munoz-Pacheco,et al.  Automatic synthesis of 2D‐n‐scrolls chaotic systems by behavioral modeling , 2009 .

[36]  V. Rozhansky,et al.  Transport Phenomena in Partially Ionized Plasma , 2001 .

[37]  Tassos Bountis,et al.  The Dynamics of Systems of Complex Nonlinear oscillators: a Review , 2004, Int. J. Bifurc. Chaos.

[38]  E. Lorenz Deterministic nonperiodic flow , 1963 .