Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.

[1]  S. Secor,et al.  Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus. , 2015, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[2]  C. D. Boone,et al.  Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. , 2014, Sub-cellular biochemistry.

[3]  Drew R. Schield,et al.  The Burmese python genome reveals the molecular basis for extreme adaptation in snakes , 2013, Proceedings of the National Academy of Sciences.

[4]  P. Uetz,et al.  Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes , 2011, Genome Biology.

[5]  S. Perry,et al.  Membrane-associated carbonic anhydrase in the respiratory system of the Pacific hagfish (Eptatretus stouti) , 2009, Respiratory Physiology & Neurobiology.

[6]  Edward H. Miller,et al.  Comparative Biochemistry and Physiology, Part A , 2009 .

[7]  S. Perry,et al.  Hypoxia-inducible carbonic anhydrase IX expression is insufficient to alleviate intracellular metabolic acidosis in the muscle of zebrafish, Danio rerio. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[8]  Bo-Kai Liao,et al.  Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. , 2008, American journal of physiology. Cell physiology.

[9]  S. Secor,et al.  Matched regulation of gastrointestinal performance in the Burmese python, Python molurus , 2008, Journal of Experimental Biology.

[10]  S. Secor Specific dynamic action: a review of the postprandial metabolic response , 2008, Journal of Comparative Physiology B.

[11]  S. Secor,et al.  Adaptive regulation of digestive performance in the genus Python , 2007, Journal of Experimental Biology.

[12]  G. Schwartz,et al.  The role of carbonic anhydrases in renal physiology. , 2007, Kidney international.

[13]  B. Tufts,et al.  The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates , 2006, Respiratory Physiology & Neurobiology.

[14]  Tobias Wang,et al.  Arterial acid-base status during digestion and following vascular infusion of NaHCO(3) and HCl in the South American rattlesnake, Crotalus durissus. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[15]  G. Schwartz,et al.  Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[16]  B. Tufts,et al.  Evidence for a membrane-bound carbonic anhydrase in the heart of an ancient vertebrate, the sea lamprey (Petromyzon marinus) , 2004, Journal of Comparative Physiology B.

[17]  Tobias Wang,et al.  Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor , 2004, Journal of Experimental Biology.

[18]  R. Boutilier,et al.  The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange , 1993, Journal of Comparative Physiology B.

[19]  D. Vid Feeding Habits of the Diamond Python, Morelia s. spilota: Ambush Predation by a Boid Snake , 2004 .

[20]  S. Secor Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus , 2003, Journal of Experimental Biology.

[21]  L. F. Toledo,et al.  Temperature and Meal Size Effects on the Postprandial Metabolism and Energetics in a Boid Snake , 2003, Physiological and Biochemical Zoology.

[22]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[23]  Tobias Wang,et al.  The respiratory consequences of feeding in amphibians and reptiles. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[24]  A. F. Bennett,et al.  Patterns of cardiovascular and ventilatory response to elevated metabolic states in the lizard Varanus exanthematicus. , 2000, The Journal of experimental biology.

[25]  A. F. Bennett,et al.  Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. , 2000, The Journal of experimental biology.

[26]  S. Secor,et al.  Evolution of Regulatory Responses to Feeding in Snakes , 2000, Physiological and Biochemical Zoology.

[27]  E. Swenson,et al.  Respiratory and renal roles of carbonic anhydrase in gas exchange and acid-base regulation. , 2000, EXS.

[28]  J. Overgaard,et al.  Respiratory consequences of feeding in the snake Python molorus. , 1999, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[29]  S. Onishi,et al.  Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1. , 1999, Genomics.

[30]  Y. Kim,et al.  Basolateral regulation of pHiin isolated snake renal proximal tubules in presence and absence of bicarbonate. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[31]  W. Dantzler,et al.  Basolateral regulation of pHi in isolated snake renal proximal tubules in presence and absence of bicarbonate. , 1999, The American journal of physiology.

[32]  N. Tamura,et al.  Isolation and Characterization of CA XIV, a Novel Membrane-bound Carbonic Anhydrase from Mouse Kidney* , 1999, The Journal of Biological Chemistry.

[33]  S. Secor,et al.  Determinants of the Postfeeding Metabolic Response of Burmese Pythons, Python molurus , 1997, Physiological Zoology.

[34]  S. Secor,et al.  Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus). , 1997, The American journal of physiology.

[35]  Harry W. Greene,et al.  Snakes: The Evolution of Mystery in Nature , 1997 .

[36]  W. Dantzler,et al.  Intracellular pH in snake renal proximal tubules. , 1995, The American journal of physiology.

[37]  Somero,et al.  Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis , 1995, The Journal of experimental biology.

[38]  W. Dantzler,et al.  Relation of membrane potential to basolateral TEA transport in isolated snake proximal renal tubules. , 1995, The American journal of physiology.

[39]  S. Secor,et al.  Adaptive responses to feeding in Burmese pythons: pay before pumping. , 1995, The Journal of experimental biology.

[40]  S. Secor,et al.  Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum , 1994 .

[41]  D. Randall,et al.  H+-ATPase ACTIVITY IN CRUDE HOMOGENATES OF FISH GILL TISSUE: INHIBITOR SENSITIVITY AND ENVIRONMENTAL AND HORMONAL REGULATION , 1993 .

[42]  S. McCormick,et al.  Methods for Nonlethal Gill Biopsy and Measurement of Na+, K+-ATPase Activity , 1993 .

[43]  R. Henry Techniques for Measuring Carbonic Anhydrase Activity in Vitro , 1991 .

[44]  G. Gros,et al.  The Carbonic anhydrases : cellular physiology and molecular genetics , 1991 .

[45]  T. E. Northrup,et al.  Transport and histochemical studies of bicarbonate handling by the alligator kidney. , 1989, The American journal of physiology.

[46]  D. Jackson,et al.  Ionic compensation with no renal response to chronic hypercapnia in chrysemys picta bellii. , 1986, The American journal of physiology.

[47]  D. Felsenthal,et al.  SUMMARY , 1970, The Triumph and Trade of Egyptian Objects in Rome.

[48]  W. Dantzler Effect of metabolic alkalosis and acidosis on tubular urate secretion in water snakes. , 1968, The American journal of physiology.

[49]  J. Macmahon,et al.  The Giant Snakes. , 1962 .