Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production.

Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions.

[1]  Jun Lu,et al.  Dimeric [Mo2 S12 ](2-) Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis. , 2015, Angewandte Chemie.

[2]  W. Goddard,et al.  The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS2. , 2015, Journal of the American Chemical Society.

[3]  T. Groy,et al.  A nickel phosphine complex as a fast and efficient hydrogen production catalyst. , 2015, Journal of the American Chemical Society.

[4]  S. Gul,et al.  Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst , 2014, Journal of the American Chemical Society.

[5]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[6]  Agustín Galindo,et al.  Experimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids. , 2014, Dalton transactions.

[7]  Xin Wang,et al.  Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction , 2014 .

[8]  T. Jaramillo,et al.  Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. , 2014, Nature chemistry.

[9]  James R. McKone,et al.  Will Solar-Driven Water-Splitting Devices See the Light of Day? , 2014 .

[10]  A. Gushchin,et al.  Binuclear cluster complexes of molybdenum containing 2,2′-bipyridine and 1,10-phenanthroline: Synthesis and structure , 2013, Journal of Structural Chemistry.

[11]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[12]  J. Long,et al.  A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation , 2012, Science.

[13]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[14]  M. Field,et al.  A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: a combined electrocatalytical and DFT mechanistic study , 2011 .

[15]  B. Floris,et al.  Vanadium and molybdenum peroxides: synthesis and catalytic activity in oxidation reactions. , 2011, Dalton transactions.

[16]  M. Fontecave,et al.  H2 evolution and molecular electrocatalysts: determination of overpotentials and effect of homoconjugation. , 2010, Inorganic chemistry.

[17]  T. Jaramillo,et al.  Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ Electrocatalysts , 2008 .

[18]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[19]  C. Ritchie,et al.  An Examination of Structure‐Reactivity Relationships , 2007 .

[20]  D. Coucouvanis,et al.  Molybdenum‐Sulfur Clusters , 2007 .

[21]  Hua-ming Li,et al.  Peroxo-tungsten complex catalysed synthesis of adipic acid and benzoic acid with hydrogen peroxide , 2006 .

[22]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[23]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[24]  I. Chorkendorff,et al.  Assembled monolayers of Mo3S4(4+) clusters on well-defined surfaces. , 2006, Dalton transactions.

[25]  D. Churchill,et al.  Hydride, halide, methyl, carbonyl, and chalcogenido derivatives of permethylmolybdenocene , 2006 .

[26]  D. Dubois,et al.  Molybdenum-sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials. , 2005, Journal of the American Chemical Society.

[27]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[28]  Montserrat Gómez,et al.  Structural Studies of Mono‐ and Dimetallic MoVI Complexes − A New Mechanistic Contribution in Catalytic Olefin Epoxidation Provided by Oxazoline Ligands , 2004 .

[29]  J. Bonanno,et al.  The syntheses, structures and reactivity of bis(tert-butylcyclopentadienyl)molybdenum derivatives: nitrogen alkylation of an η2-acetonitrile ligand and influence of the chalcogen on the barrier to inversion of chalcogenoether adducts , 2001 .

[30]  E. Stiefel,et al.  Ligand and Tetrathiometalate Effects in Induced Internal Electron Transfer Reactions. , 1999, Inorganic chemistry.

[31]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[32]  M. T. Pope,et al.  Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten , 1994 .

[33]  S. Moro,et al.  Correlation between one-electron reduction and oxygen-oxygen bond strength in d0 transition metal peroxo complexes , 1993 .

[34]  S. Ganguly,et al.  First electrosynthesis of transition metal peroxo complexes. Synthesis, characterization and reactivity of molybdenum and tungsten heteroligand peroxo complexes , 1993 .

[35]  C. Pierpont,et al.  Formation of the {MO(S2)2} (M = molybdenum, tungsten) moiety by a MO42--polysulfide reaction: synthesis and structure of MO(S2)2(bpy) , 1992 .

[36]  W. Herrmann,et al.  Wasserlösliche Metallkomplexe und Katalysatoren, IV. 2,2′-Bipyridin-5-sulfonsäure: Synthese, Reinigung, Derivate und Metallkomplexe , 1990 .

[37]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[38]  F. Weinhold,et al.  Natural population analysis , 1985 .

[39]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[40]  G. Schrauzer,et al.  Crystal structure of oxo(diperoxo)bipyridylmolybdenum(VI) , 1984 .

[41]  Jacopo Tomasi,et al.  Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .

[42]  A. Müller,et al.  Eine einfache Darstellung der binären Metall-Schwefel-Cluster [Mo3S13]2− und [Mo2S12]2− aus MoO42− in praktisch quantitativer Ausbeute , 1979 .