Small-angle X-ray scattering documents the growth of metal-organic frameworks

[1]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[2]  F. Kapteijn,et al.  High compressibility of a flexible metal–organic framework , 2012 .

[3]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[4]  Freek Kapteijn,et al.  Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance , 2012 .

[5]  O. Temkin Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms , 2012 .

[6]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[7]  C. Tang,et al.  Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. , 2012, Dalton transactions.

[8]  Wenbin Lin,et al.  Amplified luminescence quenching of phosphorescent metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[9]  J. Marrot,et al.  Synthesis, structure, and crystallization study of a layered lithium thiophene-dicarboxylate , 2012 .

[10]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[11]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[12]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[13]  F. Kapteijn,et al.  Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering. , 2011, Chemical communications.

[14]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[15]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[16]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[17]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[18]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[19]  Richard I. Walton,et al.  A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework , 2011 .

[20]  J. Caro,et al.  Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. , 2010, Journal of the American Chemical Society.

[21]  F. Emmerling,et al.  Mechanochemical Synthesis of Metal-Organic Frameworks : A Fast and FacileApproach towardQuantitativeYields andHighSpecific SurfaceAreas , 2010 .

[22]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[23]  Song Gao,et al.  Reversible de-/resolvation and accompanied magnetism modulation in a framework of topologically ferrimagnetic [Co3(mu3-OH)2]n chains linked by a V-shaped ligand 4,4'-dicarboxybiphenyl sulfone. , 2010, Chemical communications.

[24]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[25]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[26]  Natasha A. Chernova,et al.  3-D Metal−Organic Framework Based on Cationic 2-D Cuprate Layers: Cu3(OH)4[C10H6(SO3)2] , 2010 .

[27]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[28]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[29]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[30]  M. Burghammer,et al.  Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100 , 2009 .

[31]  J. Tarascon,et al.  In situ Fe XAFS of reversible lithium insertion in a flexible metal organic framework material , 2009 .

[32]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[33]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[35]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[36]  U. Jeng,et al.  Nanostructure and hydrogen spillover of bridged metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[37]  A. Beale,et al.  Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situexperiments. , 2008, Journal of synchrotron radiation.

[38]  Wenbin Lin,et al.  Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. , 2008, Angewandte Chemie.

[39]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[40]  E. Kang,et al.  Structure, Hydrogen Storage, and Luminescence Properties of Three 3D Metal−Organic Frameworks with NbO and PtS Topologies , 2008 .

[41]  C. Serre,et al.  Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. , 2008, Angewandte Chemie.

[42]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[43]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[44]  Hsin‐Lung Chen,et al.  Characterization of pore structure in metal-organic framework by small-angle X-ray scattering. , 2007, Journal of the American Chemical Society.

[45]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[46]  A. Fletcher,et al.  High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. , 2007, Journal of the American Chemical Society.

[47]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[48]  G. Shimizu,et al.  Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. , 2006, Journal of the American Chemical Society.

[49]  J. Zubieta,et al.  Hydrothermal chemistry of the copper-triazolate system: A microporous metal-organic framework constructed from magnetic {Cu3(mu3-OH)(triazolate)3}2+ building blocks, and related materials. , 2006, Angewandte Chemie.

[50]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[51]  Ga‐Lai Law,et al.  A Highly Porous Luminescent Terbium–Organic Framework for Reversible Anion Sensing , 2006 .

[52]  J. Brion,et al.  Crystal structure of hexakis(μ2-acetato)-tris(acetonitrile-κN)-μ3-oxotrialuminum( III) tetrachloroaluminate, [Al3(C2H3O2)6(C2H3N)3O] [AlCl4] , 2006 .

[53]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[54]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[55]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[56]  O. Yaghi,et al.  Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology. , 2005, Inorganic chemistry.

[57]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[58]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[59]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[60]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[61]  E. Artacho,et al.  Structure and Stability of Aluminum Hydroxides: A Theoretical Study , 2002 .

[62]  M. Ferbinteanu,et al.  Lightest member of the basic carboxylate structural pattern: [Al(3)(mu)-O)(mu(2)CCF(3))(6)(THF)(3)][(Me(3)Si)(3)CAl(O(2)CCF(3))(3)] x C(7)H(8). , 2002, Inorganic chemistry.

[63]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[64]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[65]  A. Gualtieri Synthesis of sodium zeolites from a natural halloysite , 2001 .

[66]  Mark E. Davis,et al.  Si-MFI Crystallization Using a "Dimer" and "Trimer" of TPA Studied with Small-Angle X-ray Scattering , 2000 .

[67]  Gérard Férey,et al.  Building Units Design and Scale Chemistry , 2000 .

[68]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[69]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[70]  R. A. Santen,et al.  SAXS/WAXS study on the formation of precursors and crystallization of silicalite , 1997 .

[71]  A. S. Pavlatou-Ve,et al.  Formation of Aluminum Hydroxides as Influenced by Aluminum Salts and Bases , 1995 .

[72]  P. Huang,et al.  Formation Mechanism of Aluminum Hydroxide Polymorphs , 1993 .

[73]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[74]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[75]  P. Huang,et al.  Influence of Inorganic and Organic Ligands on the Formation of Aluminum Hydroxides and Oxyhydroxides , 1985 .

[76]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .